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ABSTRACT

The project, entitled "Computational Control of Flexible Aerospace Systems", was

granted by NASA Langley Research Center (NAG-l-1436) started from January of 1992 and

continued for three years. The main objective of this project is to establish a distributed parameter

modeling technique for structural analysis, parameter estimation, vibration suppression and control

synthesis of large flexible aerospace structures.

The major focus of the fa'st-year (1992) research was the distributed parameter modeling

of large flexible aerospace "structures with complex configurations. As an example, the Low-

power Atmospheric Compensation Experiment (LACE) Satellite Model had been used as the

testbed and physical object. The main accomplishments can be summarized as follows. A

physical research LACE Model with a 10 by 10 feet supporting frame had been built at NASA

LaRC. The classical modal test had been conducted on this model so that the natural frequencies

of the model were measured which were used to compare with the analytical results obtained from

the distributed parameter model of the LACE Model. A comprehensive dynamic formulation of

the distributed parameter model for tether-beam-rigid-body assembled structures by using transfer

matrix method had been systematically derived. Although the mathematical model must be

derived, depending on the feature of different satellite structures, the methodology developed in

the first-year research is defmitely suitable for all tether-beam-rigid-body assembled structures.

The software PDEMOD were used to find the natural frequencies of the system. The analytical

values were comparable to the experimental results. A technical report entitled "Distributed

Parameter Formulation of LACE Satellite Model by Using Transfer Matrix Method" had

been submitted to NASA LaRCtl r A summary of the report had been presented at the 9th

VPI&SU Symposium on Dynamics & Control of Large Space Structurest2 r The last two-year

research was conducted on two phases. The first phase was the completion of the current version

of PDEMOD Code and its related documentation. The second phase was to analyze the dynamic

properties of a two-dimensional ground-based manipulator facility at the NASA Marshall Space

Flight Center (MSFC) under various configurations, and to develop a methodology for vibration

suppression of the end-effector by using distributed parameter modeling.

This report concentrates on the research outputs produced in the last two years. The main

accomplishments can be summarized as follows. A new version of the PDEMOD Code had been

completed based on several incomplete versions Mr. Taylor was working on just before he died.

The verification of the code had been conducted by comparing the results with those examples for

which the exact theoretical solutions can be obtained. A summary of the theoretical background

of the package along with the verification examples has been reported in a technical paper

submitted to the Joint Applied Mechanics & Material Conference, ASME, Los Angeles, June 28-

30, 1995r_ j. Correspondingly, a brief USER'S MANUAL had been compiled, which mainly

includes three parts: (1) Input data preparation, (2) Explanation of the Subroutines, (3)

Specification of control variables.



Meanwhile,a theoreticalinvestigationof theNASA MSFCtwo-dimensionalground-based
manipulatorfacility by usingdistributedparametermodelingtechniquehasbeenconducted. A
newmathematicaltreatmentfor dynamicanalysisandcontrolof largeflexible manipulatorsystems
hasbeenconceived,which mayprovidea embryonicform of a moresophisticatedmathematical
modelfor futuremodifiedversionsof thePDEMOD Codes. This researchhasbeenreportedin
two technicalpaperst4,5r

EXECUTIVE SUMMARY

The common approach used in the analysis of structural dynamics and the interaction with

the control synthesis of large flexible aerospace structures is the finite element method. Although

the finite dement method has been widely accepted, the significant limitations still exist. The

dements used in the finite dement method are usually void of dynamics, such as massless axial

springs. The consequence is that hundreds and thousands of elements are needed to represent

large flexible structures in order to acquire analytical accuracy. Because of the computational cost

and numerical inaccuracies involved in generating solutions of large number of equations, there

is a practical limit to the accuracy of finite element dynamic models. The high order of the

structural model requires an "order reduction" process before a control system can be designed.

Seemingly unimportant modes can be inadvertently eliminated which prove later to be significant

to control system performance and stabilityt6 J.

Distributed parameter modeling is being seen to offer a viable alternative to the/-mite

element approach for modeling large flexible space structures. Distributed parameter models have

the advantages of improved accuracy, reduced number of modal parameters, the avoidance of

modal order reduction, and especially, the ability to represent the structural and control system

dynamics in the same system of equations. Continuum models have been made of several flexible

space structures, which include the Spacecraft Control Laboratory (SCOLE)m, Solar Army Flight

Expefimenttgl, NASA Mini-Mast Trusstgj, the Space Station Freedomtl01, and recently, the Low-

power Atmospheric Compensation Experiment (LACE) Satellite Modelt2 r A computer software

package aiming at performing structural analysis and control system synthesis had been initialized

and is primarily completed for its basic functions.

The software package PDEMOD was initialized by Dr. Lawrence W. Taylor, Jr. at NASA

Langley Research Center during the middle of the 1980's. The first release of his work on

PDEMOD package was in 19870_,12,13 J. The initial interest of the package PDEMOD was to

model the structural dynamics of general spacecraft configurations by using the distributed

parameter approach. A system of partial differential equations is formulated and connected at

their boundaries. The equations of motion for any number of rigid bodies are written in the

frequency domain and in terms of the coefficients of the sinusoidal and hyperbolic functions which

comprise the mode shapes. Distributed parameter models can, therefore, be generated for any

three dimensional configurations describable by partial differential equations joined at their

boundaries. The manual labor of generating such models is therefore avoided.



Becauseof Dr. Taylor'ssuddenpassingaway, it becomesa urgenttaskto summarizeand
sift his researchachievements,andmakeit availableto theotherresearchers.With the NASA's
support,anewversionof thePDEMODCodehasbeencompletedduringthepast two yearsbased
on severalincompleteversionsof Dr. Taylor. A summaryof thetheoreticalbackgroundof the
packagealong with the verification exampleshas been reported in a technical papert33.
Summarily, a complex largeaerospacestructureis consideredasanassemblyof flexible beam
elementsandrigid bodies. Eachflexiblebeamelementis representedby four independentpartial
differential equationswhich exhibit lateralbendingin two axes,axialdeformation,andtorsion.
A systemof partial differential equationsis then formulatedand connectedat the elements'
boundariesbasedon thecompatibility conditions. The equationsof motion for any numberof
rigid bodiesarewritten in the frequencydomainand in termsof the mode shapeparameter
coefficients.Thedeflections,forcesand momentsfor bothendsof a singlebeamelementcanbe
describedin termsof the spatialderivativesof the solutionsof thecorrespondingPDE's, further
expressedin termsof the samesetof modeshapeparametercoefficients. Distributedparameter
modelscanthereforebegeneratedfor anythree-dimensionalconfigurationsdescribableby PDE's
joinedat their boundaries. An accomplishmentof this taskmayprovide anopportunityto more
researchersto apply distributed parametermodeling techniquesto a variety of aerospace
structures.

The verification of the Code hasbeenconductedby comparingthe resultswith those
examplesfor whichtheexacttheoreticalSolutionscanbeobtained.Four verified exampleswere
includedin thepackage:Example1- Bendingof a CantileveredBeam;Example2 - Bendingof
a Clamped-ClampedBeam;Example3 - Bendingof a CantileveredBeamwith a Tip-MassM;
Example4 - Torsionof aCantileveredBeam. Correspondingly,abrief USER'S MANUAL, had
beencompiled,whichmainly includesthreeparts: (1) Inputdatapreparation,(2) Explanationof _
theSubroutines,(3) Specificationof control variables.

By investigatingthepotentialof thedistributedparametermodelingtechnique,Dr. Taylor
andtheotherresearchersexpectedthat thePDEMOD maybe furtherdevelopedin thefollowing
aspects: (1)structuraldynamics,modal frequenciesandmodeshapes;(2) parameterestimation
of modalcharacteristics;(3) structural damping; (4) control systemdynamics;and (5) design
optimization.But, only the first of theprogramhadbeencompletedandincludedin thecurrent
package.To extendthefunctionsof thecurrentpackage, a massiveresearchis beingconducted,
whichsuggeststo modify themathematicalmodelandglobalsystemgeneratingprocedurets,9J, to
developmethodologyfor controlsynthesist4.14,15J. Insteadof usingthecoefficientsof thesolution
functions,thetransfermatrix maybeusedfinally, whichprovidesa muchmoreconvenientway
to describethestate-vectortransitionfrom onepoint of thestructureto theother.

These tentativeideashave beenincludedin the second-phaseresearch. A theoretical

investigation of the NASA MSFC two-dimensional ground-based manipulator facility by using

distributed parameter modeling technique has been conducted. The MSFC facility is planned to

conduct research in the berthing operation and, in general, research into the control of multibody

configurations that are loosely coupled with flexible manipulator linkagest161. A new mathematical

treatment for dynamic analysis and control of large flexible manipulator systems has been



conceived,whichmayprovidea embryonicform of a moresophisticatedmathematicalmodel for
future modified versionsof the PDEMOD Codes. This researchhasbeen reported in two
technicalpaperst_.51.

ENCLOSURES

The enclosures of this report are listed as follows, which represent the research

accomplishments of this project.

1. The PDEMOD Code and the computed results for four verified examples;

2. USER'S MANUAL;

3. Reference Paper 3: "PDEMOD - A Computer Program for Distributed Parameter Estimation

of Flexible Aerospace Structures, Part I: Theory and Verification";

4. Reference Paper 4: "A Method of Superposing Rigid-Body Kinematics and Flexible Deflection

for End-Effector Vibration Suppression of a Large Flexible Manipulator System".

SUGGESTION TO FUTURE RESEARCH

As mentioned before, the PDEMOD may be further developed in the following aspects:

(1) structural dynamics, modal frequencies and mode shapes; (2) parameter estimation of modal

characteristics; (3) structural damping; (4) control system dynamics; and (5) design optimization.

To do so, the following two significant modifications will be necessary. First, the mathematical

model supporting the current version of the PDEMOD Code must be modified. In current

mathematical model, the equations of motion for any number of rigid bodies were written in terms

of the mode shape parameter coefficients of the corresponding beam elements where the rigid

bodies were attached. In other words, the state variables were chosen as the coefficients of the

sinusoidal and hyperbolic functions which comprise the solutions of the corresponding PDE's.

This model is not suitable for control synthesis. Instead of using the coefficients of the solution

functions, the transfer matrix may be used, which provides a much more straightforward way to

describe the state-vector transition from one point of the structure to the other, directly using

deflections, slopes, forces and moments at both ends of individual beam element as state variables.

Since deflections are the controlled variables and forces and moments are the motivating variables,

choosing them as state variables are definitely more suitable for control purpose.

Second, the package must include system identification and parameter estimation as an

important part of the whole procedure. In general, the model used in distributed parameter

analysis is actually an equivalent model of the real structure described by a set of PDE's. To keep

the equivalency, a reasonable criterion to judge the equivalency must be properly set up first. The

criterion used in current version of the PDEMOD was to keep the equivalency in the sense that

the static stiffness were approximately equal between the distributed parameter model and the real

structure. The equivalent parameters of the distributed parameter model, such as, mass, stiffness,

radius of gyration, etc., were then determined based on this criterion. Further, the characteristic



equation is solved to obtain the dynamic properties of the structure. However, the stiffness of a

complex structure is usually related to the frequencies. The static equivalency can not guarantee

dynamic equivalency in general, and error may arise. To correct the errors, current PDEMOD

package adjusted the equivalent parameters based on some experimentally measured frequencies

without specified mathematical algorithm. This correction is largely dependent on the user's

experience, different users obtain different results at times. To overcome this deficiency, it is

necessary to provide an algorithm to precisely define the dynamic equivalency, such as maximum
likelihood estimator.
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INTRODUCTION

The software package PDEMOD was initialized by the late Lawrence W. Taylor, Jr. at

NASA Langley Research Center during the middle of the 1980's. The first release of his work on

PDEMOD package was in 1987. PDEMOD was initially developed to model the structural

dynamics of general spacecraft configurations by using the distributed parameter approach, which

consists of three-dimensional network of flexible beams and rigid bodies. The building blocks

from which three-dimensional configurations can be constructed consist of (I) beams, which have

bending in two directions, torsion, and elongation degrees of freedom, and (2) rigid bodies, which

are connected by any network of beam elements. The full six degrees of freedom are allowed at

either end of the beam. Rigid bodies can be attached to the beam at any angle or body location.

The modified Bernoulli-Euler beam equation is used to represent the bending and the wave

equations for torsion and elongation.

A system of partial differential equations (PDEs) is formulated and connected at the

elements' boundaries based on the compatibility conditions. The equations of motion for any

number of rigid bodies are written in the frequency domain and in terms of the coefficients of the

sinusoidal and hyperbolic functions which comprise the mode shapes. The force and moment

vectors for both ends of a single beam dement can be described in terms of the spatial derivatives

of the solutions of the corresponding PDE's. Distributed parameter models can therefore be

generated for any three-dimensional configurations describable by PDEs joined at their

boundaries. The manual labor of generating such models is therefore avoided.

Because of Dr. Taylor's sudden demise, it becomes an urgent task to summarize his

research achievements and make them available to the other researchers. This work is being

continued and this review may provide an opportunity to more researchers to apply distributed

parameter modeling techniques to a variety of aerospace structures. The verification of the code

has been conducted by comparing the results with those examples for which the exact theoretical

solutions can be obtained, for instance, a simple beam with various boundary conditions, etc.
The theoretical derivation of the formulation and the verification of the code have been

included in Shen, et al.iq. This USER'S MANUAL concentrates on the explanation of the

package itself. The package PDEMOD mainly includes three parts: (1) Input data, which

specifies structural configuration, mechanical properties of the consisting beams and rigid bodies,

and the natural frequency range one would like to search, etc., (2) Main body of the package,

which conducts the calculation specified by the formulation developed in Shen, et al.tu, and (3)

Subroutines necessary for completing the calculation. Since the formulation has been clearly

described in Shen, et al.tu , this Manual emphasizes the first and the third parts. It should please

the user to know that it is necessary to read Shen, et al.tu, before reading this Manual. The user

should begin by solving some of the example problems given in Shen, et al._j. The user should

then proceed to work on their own complex problems.

The USER'S MANUAL and Shen, et al.tq are the basic technical specification reference

documents for the PDEMOD package. Although these two reference documents are sufficient

for some users, other references, e.g. [3-14], will give more details of this package. It is our

recommendation that users review as many of these references as possible to gain a thorough

understanding of the PDEMOD package.
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Neither the late Lawrence W. Taylor, Jr., nor his working colleagues, the compilers of this

package and the authors of some of the related papers, assume any responsibility for the validity,

accuracy, or applicability of any results. Users must verify their own results.
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USER'S GUIDE

A. SUBROUTINES:

There are 17 subroutines in the package PDEMOD. The subroutines used in PDEMOD

can be categorized as two types. The nine common-purpose subroutines (TYPEd

SUBROUTINES) are contained in a SUBROUTINE LIBRARY called "LODLIB.F", which is

the selected part of the SUBROUTINE LIBRARY "SYSPAC" (SYStems analysis programs

PACkage) at NASA Langley Research Center (LaRC)I21. The SYSPAC is a data base at LaRC

for the purpose of making experimental data and a selection of analysis algorithms available to

interested researchers studying aerodynamics, flight mechanics, structural dynamics and system

identification. The other eight subroutines (TYPE-II SUBROUTINES) are not included in

SYSPAC and are programmed specifically for PDEMOD. Their format is consistent with those
of the TYPE-I SUBROUTINES.

All vectors and matrices used in the subroutines are expressed in a vector form, and have a

common format. The first four elements of each vector are respectively: (1) the number of rows,

(2) the number of columns, (3) the total number of elements, and (4) the data time interval. This

format allows matrix information to be readily accessible in programming data analysis

procedures, for calling numerous subroutines, in printing and in plotting. The 17 subroutines in
PDEMOD are described as follows.

TYPE-I SUBROUTINES:

1. SUBROUTINE ADD (P, A, Q, B, C)

Description: Two compatible matrices

respectively) and then added: C=P*A+Q*B.

(A and B) are multiplied by scalars (P and Q,

2. SUBROUTINE MULT (A, B, C)

Description: Multiplies two matrices: C=A*B.

3. SUBROUTINE MAKE (A, B)

Description: Copies B in A: A=B.

4. SUBROUTINE SET (A, rl, j J)

Description: Creates a null matrix with II rows and J1 columns: A=[0].

5. SUBROUTINE SPIT (A, B)

Description: Labels and lists a matrix

6. SUBROUTINE TRANS (A, B)

Description: Generates a matrix transpose: B=A T.

7. SUBROUTINE TILDA (A, B)

Description: Forms the matrix equivalent of a cross product from a vector {A}s.1,

4
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So SUBROUTINE JUXTV (A, B, C)

Description: Combines by juxtaposition two compatible matrices in a vertical direction:

I-A-1
C--LBj

9. SUBROUTINE IDENT (A, II)

Description: Forms an identity matrix A with dimension II.

TYPE-H SUBROUTINES:

10. SUBROUTINE AFORM (W, A, BODREF, CONFIG, L, P, Q, R, T, INRT, MASS,

DUM, DUN, DUO, DUP)

Description: Forms the system matrix A. (See Shen, et al.[ll, Eq.34)

11. SUBROUTINE BODFORM (CONFIG, NBEAM, BODREF, NBODY)

Description: Determines rigid bodies' connectivity and the reference coordinate systems.

12. SUBROUTINE PFORM (W, L, Z, EIX, EIY, EAZ, EIP, MPL, IPL, FZ, AGKX,

AGKY, PF, PM)

Description: Forms the matrices Pv and PM (see Shen, et al.t]l, Eqs.16 and 17).

13. SUBROUTINE QFORM (W, L, Z, EIX, El'Y, EAZ, El:P, MPL, IPL, FZ, AGKX,

AGKY, QU, QS)

Description: Forms the matrices Q,. and Q, (see Shen, et al.[l], Eqs. 14 and 15).

14. SUBROUTINE PQFORM (W, L, E, P, Q, DUM, DUN)

Description: Combines the matrices P and Q, respectively, by juxtaposition for multi-body,

multi-beam system.

15. SUBROUTINE UPPER (A, DETA)

Description: Determines the determinant of the matrix A by transforming it as a upper

triangular matrix.

16. SUBROUTINE DIAG (A, SHAPE)

Description: Diagrams the mode shapes.

17. SUBROUTINE WSEARCH (W, DW, A, DETNEW, DETOLD, WI)

Description: Search for the values of circular natural frequencies.



B. VARIABLES AND ARRAYS:

There are a number of variables and arrays are used in PDEMOD. They are defined

below:

VARIABLES:

NBEAM: Number of beams.

NBODY: Number of rigid bodies.

NA=12*NBEAM, where the number 12 indicates that there are 12 unknown coefficients for each

beam element (see Shen, et al.ill, Eq. 13).

Li: Length of the ith beam..

EIXi: Bending rigidity (EIx) of the ith beam.

EI'Yi: Bending rigidity (EIy) of the ith beam.

Ell'i: Torsional rigidity (GIp) of the ith beam.

EAZi: Axial rigidity (EAz) of the ith beam.

MPLi: Mass per length of the ith beam.

IPLi: Mass moment of inertia per length of the ith beam.

FZi: Initial tensile force for the ith tether element.

AGKXi: Radius of gyration about x-axis of the cross-section area of the ith beam.

AGKYi: Radius of gyration about y-axis &the cross-section area of the ith beam.

MASSi: Mass of the ith rigid body.

W: Circular natural frequency.

WINC: Increment of the value of W for iteration.

NIW: Specified number of iteration.

ARRAYS:

CONFIG (NBEAM, 3): Denotes the structural configuration: Column No. l=Beam Identification

Number (ID); Column No.2=Inboard Body Identification Number; Column No.3=Outboard Body

Identification Number. A negative sign "-" prior to the numbers in columns 2 and 3 indicates

which beam is used to define body axes. For example, a two-beam,.three-body system is shown

in Figurel. The definitions of "Inboard Body" and "Outboard Body" are depicted at the right-

hand sides of the body ID Numbers. The 2 by 3 matrix CONFIG for this example is numbered as

shown in the Tablel.

Table 1 Example of the Matrix CONFIG

Beam's ID Inboard Body's ID Outboard Body's ID
1 -1 -2

2 2 -3



( ) Body3

Beam 2

( ) Body 2

Beam 1

mm

Body 1 (_rth)

Figure 1

-- Outboard Body of Beam 2

Inboard Body of Beam 2
Outboard Body of Beam 2

-- Inboard Body of Beam l

Two-Beam, Three-Body System

The negative signs prior to the numbers located at (1, 2) and (I, 3) indicate that both bodies 1 and

2 are defined in the beam l's coordinate system, while the negative sign prior to the number

located at (2, 3) indicates that body 3 is defined in the beam 2's coordinate system.

BODREF (NBODY, 2): Defines body's connectivity and reference coordinate. The number of

rows of BODREF equals to the number of bodies. Each row provides the connectivity

information of the corresponding body, consecutively. Column No. 1 indicates the beam's ID, the

connected body uses this beam's coordinate system as the reference system. Column No.2

indicates the mutual location between the body and the reference beam. If the body is the inboard

body of that beam, the number equals to zero and if the body is the outboard body of that beam,

the number equals to one. Note that BODREF is not a input array. All the numbers will be

produced by calling SUBROUTINE BODFORM. In fact, CONFIG has provided all necessary

information.

RiI (3, 3): The eccentric matrix at the attachment point between the ith beam and its inboard

body.

RiO (3, 3): The eccentric matrix at the attachment point between the ith beam and its outboard

body.

R (4+IS*NBEAM): The eccentric matrix containing all of matrices by juxtaposition: RiI and

RiO, i=l, NBEAM.

Ti (3, 3): The coordinate-transformation matrix.

INRTi (3, 3): The mass-moment-of-inertia matrix of the ith body.

INRT (4+9*NBODY): The mass-moment-of-inertia matrix containing all of INRTi matrices,

i=l, NBODY, by juxtaposition.

E (4+9"NBEAM): Beams' mechanical-property matrix. The first four elements are used for the

common purpose as mentioned before. Each consecutive nine numbers represent one beam's



mechanicalproperties,respectively,that is: E(5)=EIX1, E(6)=EIYI, E(7)=EAZ1, E(8)=EIPI,
E(9)=MPL1,E(10)=IPL1,E(11)=FZ1,E(12)=AGKX1,E(13)=AGKY1,andsoon.

MASS (4+NBODY): Body's mass matrix.

P [4+(3*12)*NBEAM]: Forms matrix P which consists of all the matrices PF and Pra for each

beam element consecutively by juxtaposition (see Shen, et al.tq, Eqs. 16 and 17). Expressed in

matrix form, the matrix P is constructed as

[P] =

[PF,]3,,12

[Pu,]3x_2

[PM,]3×12

For Beaml

For Beam2

Q [4+(3*12)_NBEAM]: Forms matrix Q which consists of all the matrices Q= and Q, for each

beam element consecutively by juxtaposition (see Shen, et al.[11, Eqs.I4 and 15). Expressed in

matrix form, the matrix Q is constructed as

- [Q,,, ]3_2"

[O,, L,2

[Q] = l [Q'' ]3_12

[Q,,]3,,l:

For Beaml

For Beam2

A [4+(12*NBEAM)*(12*NBEAM)]: Forms system matrix A which consists of all the matrices

AF and Ara for each beam element consecutively by juxtaposition, while the matrices Av and AM

are constructed by the element matrices PF, Pra, Q,, and Q, in the way indicated in Shen, et al.tl],

Eq.33.

DETOLD, and DETNEW [4+(12*NBEAM)*(12*NBEAM)]: Determine the determinant of

the system matrix A by iteration. DETOLD is the previous one, while DETNEW the up-dated

one. When the value of the determinant is small enough to be considered as zero, the

corresponding natural frequency is found.

C. CONTROL VARIABLES:

NPROB: The problem number the user chooses to solve. If NPROB=I, then PROBLEM #1 is

solved, and so forth. The current version of PDEMOD has encluded four verification examples:



EXAMPLE 1- Bendingof a Cantilevered Beam; EXAMPLE 2 - Bending of a Clamped-Clamped

Beam; EXAMPLE 3 - Bending of a Cantilevered Beam with a Tip-Mass M; EXAMPLE 4 -

Torsion of a Cantilevered Beam. User can add his own problems into the package and assign

corresponding problem numbers.

IFREQ: Index for conducting natural frequency analysis. If IFREQ=I, the natural frequency of

the system will be computed.

ISItP: Index for conducting mode shape analysis. If lSHP=I, the mode shape functions will be

computed.

D. SPECIAL NUMBERS:

The following special numbers are used in the package to define some boundary

conditions, null mass, or infinite mass, etc., so that the tedious modal reconstruction can be

avoided.

1. For a null mass, or an imaginary mass, MASSi, at the free end of a cantilevered beam, the

package defines MASSi=0.9*10 -8. Correspondingly, the diagonal elements of its mass-moment-
of-inertia matrix INRTi should be defined as the same number (0.9"10s).

2. For infinite mass, such as, the mass of the foundation of a cantilevered beam, MASSi, the

package defines MASSi=999999999.0 Correspondingly, the diagonal elements of its mass-
moment-of-inertia matrix INRTi should be defined as the same number (999999999.0).

3. For restrictions of one-direction deflection, e.g., bending about x-axis, the package defines that

the rigidity to resist the deflection in this direction approaches infinity, i.e., EIXi=999999999.0.

4. For the elements except tether element, the package defines the initial tensile force FZi=0.0.
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PDEMOD Program

Computer-Printout Codes

i



123

543

707

777

c

C

c

C

C

C

C

PROGRAM PDEMODI

INTEGER BODREF, CONFIG, OBODY

REAL INRTI, INRT2, INRT3, INRT4, MASS1, MASS2, MASS3, MASS4,

ILl, L2, L3, MPLI, MPL2, MPL3, MASS,

2IPLI, IPL2, IPL3, L, INRT, INRTI, INTRO

DIMENSION DUM(1300), DUN(1300), DUO(1300),DUP(1300),

2 INRTI (13 ), INRT2 (13 ), INRT3 (13 ), INRT4 (13 ),

3RII (13),RIO (13),R2I (13),R20 (13), R3I (13),R30(13),

4E (40) ,A(2004), DETOLD (40) ,CONFIG (5,3),

5DETNEW (40 ), BWI (8 ), BW2 (8 ), BW3 (8 ),

7PF (40), PM(40), R(94),

8WI(1300),FI(1300),L(9),

9MASS(14),INRT(69),BW(34),TBODY(13),TBEAM(13),QU(40),QS(40)

DIMENSION RI(13),RO(13),INRTI(13),INRTO(13),P(436),Q(436),

ITIT(13),TRT(13),BODREF(10,2),RI(13),CGI(7),CGTOT(7),

2TI (13), SHAPE (2004), XJI (2004), D1 (454),

3DELF(40) ,DELC(40),

4T(69),TI(13),T2 (13),T3(13)

FORMAT(28H THE SYSTEM MATRIX WILL HAVE, I3,16HROWS AND COLUMNS)

FORMAT (415, El5.5)
FORMAT (7E14.5)

FORMAT (7Ii0)

USER CAN CONTROL WHICH PROGRAM FUNCTIONS ARE ACTIVE(=1), AND NOT(=0)

IFREQ=I
ISHP=0

USER MUST SELECT THE PROBLEM NLrMBER DESIRED, i.e.NPROB=I,etc.

PROBLEM #i IS THE CANTILEVER BEAM BENDING;

PROBLEM #2 IS THE CLAMPED-CLAMPED BEAM BENDING;

PROBLEM #3 IS THE CANTILEVERED BEAM BENDING WITH A TIP_MASS;
PROBLEM #4 IS THE CLAMPED-CLAMPED BEAM TORSION.

NPROB=2

if(nprob.eq.l) goto i001

if(nprob.eq.2) goto 1002

if(nprob.eq.3) goto 1003

if(nprob.eq.4) goto 1004
c

c-PROBLEM i: **********

c
i001

C

C

C

C

c

c

c
C

140

_3

CONTINUE

PROBLEM #i is the CANTILEVERED BEAM BENDING (nbeam=l).
THE MATRIX "CONFIG" DENOTES THE STRUCTURAL CONFIGURATION

COL#1=BEAM I.D., COL#2-INBOARD BODY I.D., COL#3=OUTBOARD BODY

NEGATIVE SIGN "-" DENOTES WHICH BEAM IS USED TO DEFINE BODY AXES.

For the CANTILEVERED BEAM, BEAM1 links the Bodyl (EARTH) to

Body2 (a Null-mass). Bodyl uses the Inboard end of Beaml to
define its axes. Body2 uses the outboard end of Beaml to define
its axes.

CONFIG(I,I)=I

CONFIG(I,2)=-I

CONFIG(I,3)=-2
NBEAM=I

DO 140 IBEAM = I,NBEAM
PRINT 777, CONFIG(IBEAM, I),CONFIG(IBEAM, 2),CONFIG(IBEAM, 3)

NA=I2*NBEAM

CALL BODFORM(CONFIG,NBEAM, BODREF,NBODY)

DO 163 I = I,NBODY

PRINT 777,I,BODREF(I,I),BODREF(I,2)

CALL SET(WI,100,1)

wi(1)=0.
INPUT FOR BEAM#l, BODY#1 INBOARD AND BODY#2 OUTBOARD
LI=I30.

EIXI=40000000.

EIYI=999999999.0



C

C

EIPI=999999999 .0

MPLI=. 09556

IPLI=. 2907

EAZI=999999999 .0

FZI=0 .

AGKXI=999999999 .

AGKYI=999999999 .

CALL SET(RII,3,1)

RII (5) =0.

RII (6) =0.

RII (7) =0.
CALL TILDA(RII, DUM)

CALL MAKE (RII, DUM)

CALL SET(RIO,3,1)

RIO(5)=0.0

RIO (6)=0.0

RIO(7)=0.0
CALL TILDA(RIO, DUM)

CALL MAKE (RIO, DUM)

CALL SET(TI,3,3)

T1(5)=1.
TI(9)=I.

T1 (13 )=i.
INPUT FOR BODY#l, THE
MASSI=999999999 .0

CALL SET(INRTI,3,3)

INRTI (5) =999999999.0

INRTI (9) =999999999.0

INRTI (13) =999999999 .0

PRINT 707,MASS1
INPUT FOR BODY#2, THE

MASS2=0. 00000009
CALL SET(INRT2,3,3)

INRT2 (5) =0 .00000009

INRT2 (9) =0 .00000009

INRT2 (13) =0. 00000009
PRINT 707,MASS2

CALL SET (E, NBEAM, 9 )

E (5 )=EIXI

E (6 )=EIYI
E (7) =EAZl

E (8 )=EIPI

E (9 )=MPLI

E(10) =IPLI

E(II)=FZI
E (12 )=AGKXl

E (13 )=AGKYI

CALL SET (L, NBEAM, i)

L(5) =LI

CALL SET (MASS, NBODY, i)

MAss (5 )=MASSl
MASS (6 ) =MASS2
CALL MAKE (INRT, INRTI )

CALL JUXTV (INRT, INRT2, INRT)

CALL MAKE (T, TI)

CALL MAKE (R, RII)

CALL JUXTV (R, RIO, R)
W=4 .0

WINC=I. 01

NIW= 600

GO TO i000

c-PROBLEM 2: **********

C

1002 CONTINUE

C PROBLEM #2 is the

FIXED END, THE

NULL-MAS S.

CLAMPED_CLAMPED BEAM

EARTH.

BENDING (nbeam=l) .



C
C
C

C

240

263

C

C

C

THE _IATRIX "CONFIG" DENOTESTHE STRUCTURALCONFIGURATION
COL#1=BEAM I.D., COL#2-INBOARD BODY I.D., COL#3=OUTBOARD BODY

NEGATIVE SIGN "-" DENOTES WHICH BEAM IS USED TO DEFINE BODY AXES.

For the CANTILEVERED BEAM, BEAM1 links the Bodyl (EARTH) to

Body2 (EARTH, EITHER). Bodyl uses the Inboard end of Beaml to
define its axes. Body2 uses the outboard end of Beaml to define
its axes.

CONFIG (I, i) =i

CONFIG (i, 2) =-i

CONFIG (i, 3) =-2

NBEAM= 1

DO 240 IBEAM = I,NBEAM

PRINT 777, CONFIG (IBEAM, 1 ) ,CONFIG (IBEAM, 2 ) ,CONFIG (IBEAM, 3 )
NA= 12 *NBEAM

CALL BODFOR/_ (CONFIG, NBEAM, BODREF, NBODY)

DO 263 I = I,NBODY

PRINT 777,I,BODREF(I,I),BODREF(I,2)

CALL SET(WI,100,1)

wI (i) =0.
INPUT FOR BEAM#l, BODY#1 INBOARD AND BODY#2 OUTBOARD

LI=I30.

EIXI=40000000 .

EIYI=999999999.0

EIPI=999999999 .0

MPLI=. 09556

IPLI=. 2907

EAZI=999999999 .0

FZI=0 .

AGKXI=9999.

AGKYI=999999999 .

CALL SET(RII,3,1)

RII(5)=0.

RII (6) =0.

RII(7)=0.

CALL TILDA (RII, DUM)

CALL MAKE (RII, DUM)
CALL SET(RIO,3,1)

RIO (5) =0.0

RIO(6)=0.0
RIO(7)=0.0

CALL TILDA (RIO, DU'M)

CALL MAKE (RIO, DUM)

CALL SET(TI,3,3)

T1 (5) =i.

TI(9)=I.
TI(13)=I.

INPUT FOR BODY#l, THE

MASSI=999999999.0

CALL SET(INRTI,3,3)

INRTI (5) =9999999.0

INRTI (9) =9999999.0

INRTI (13) =9999999.0

PRINT 707,MASS1

INPUT FOR BODY#2, THE
MASS2=999999999.0

CALL SET(INRT2,3,3)

INRT2 (5) =9999999.0
INRT2 (9) =9999999.0

INRT2 (13) =9999999.0

PRINT 707, MASS2

CALL SET (E, NBEAM, 9 )

E (5 )=EIXI
E (6 )=EIYI

E (7 )=EAZI

E (8 )=EIPI

E (9 )=MPLI

FIXED END, THE EARTH.

NULL-MASS.



E (i0) =IPLI

E (ii) =FZI

E (12 )=AGKXl
E (13 )=AGKYI

CALL SET (L, NBEAM, i)

L(5)=LI

CALL SET (MASS, NBODY, i)

MASS (5 )=MASS1

MASS (6 )=MASS2
CALL MAKE (INRT, INRTI )

CALL JUXTV (INRT, INRT2, INRT)

CALL MAKE (T, TI)

CALL MAKE (R, RII)

CALL JUXTV(R, RIO, R)

W=25.0
WINC=I. 01

NIW=300

GO TO i000

c
c-PROBLEM 3 **********

c
1003

C •

c

C

C

C

c

c

c

C

340

363

C

CONTINUE
PROBLEM #3 is the CANTILEVERED BEAM BENDING (nbeam=l) with a

TIP-BODY CONNECTED.
THE MATRIX "CONFIG" DENOTES THE STRUCTURAL CONFIGURATION

COL#1=BEAM I.D., COL#2-INBOARD BODY I.D., COL#3=OUTBOARD BODY

NEGATIVE SIGN "-" DENOTES WHICH BEAM IS USED TO DEFINE BODY AXES.
For the CANTILEVERED BEAM, BEAM1 links the Bodyl (EARTH) to

Body2. Bodyl uses the Inboard end of Beaml to
define its axes. Body2 uses the outboard end of Beaml to define

its axes.

CONFIG (i, i) =i
CONFIG (i, 2) =-I

CONFIG(I, 3) =-2

NBEAM=I

DO 340 IBEAM = I,NBEAM
PRINT 777, CONFIG(IBEAM, I),CONFIG(IBEAM, 2),CONFIG(IBEAM, 3)

NA=I2*NBEAM
CALL BODFORM(CONFIG,NBEAM, BODREF,NBODY)

DO 363 I = I,NBODY
PRINT 777,I,BODREF(I,I),BODREF(I,2)

CALL SET(WI,100,1)

wi(1)=0.
INPUT FOR BEAM#l, BODY#1 INBOARD AND BODY#2 OUTBOARD

LI=3.077

EIXI=I75.9644

EIYI=999999999.0

EIPI=999999999.0

MPLI=0.012

IPLI=I.0eI0

EAZI=999999999.0

FZI=0.

AGKXI=999999999.

AGKYI=999999999.

CALL SET(RII,3,1)

RII(5)=0.

RII (6) =0.

RII(7)=0.
CALL TILDA (RII, DUM)

CALL MAKE (RI I, DUM)

CALL SET(RIO,3,1)

RIO(5)=0.0

RIO(6)=0.0

RIO(7) =-0.07
CALL TILDA (RIO, DUM)

CALL MAKE (RIO, DUM)



CALL SET(TI,3,3)
T1 (5) =i.
TI(9)=I.
TI(13)=I.

_ INPUT FOR BODY#l, THE CLAMPED_END,THE EARTH.
MASSI=999999999.0
CALL SET(INRTI, 3,3 )
INRTI (5) =999999999.0
INRTI (9) =999999999.0

INRTI (13) =999999999.0
PRINT 707,MASS1

C INPUT FOR BODY#2, THE REFLECTOR.

MASS2=4. 952/32.2

CALL SET (INRT2,3,3)

INRT2 (5) =2.341e-4

INRT2 (9) =2. 341e-4

INRT2 (13) =i. 524e-3

PRINT 707, MASS2

CALL SET (E, NBEAM, 9 )

E (5 )=EIXI

E (6 )=EIYI

E (7) =EAZl

E (8 )=EIPI

E (9 )=MPLI

E (i0) =IPLI

E (ii )=FZI

E (12 )=AGKXI

E (13 )=AGKYI

CALL SET(L,NBEAM, i)

L(5)=LI
CALL SET (MASS, NBODY, i)

MASS (5 )=MASS1

MASS (6 )=MASS2

CALL MAKE (INRT, INRTI )

CALL JUXTV (INRT, INRT2, INRT)

CALL MAKE (T, TI)

CALL MAKE (R, R11 )

CALL JUXTV(R, RIO, R)
W=I0.0
winc=l. 01

niw=150

GO TO 1000

c
c-PROBLEM 4 **********

c

1004

C

c

C
C

C

c

c

c

C

463

CONTINUE

PROBLEM #4 is the TORSION Of A CLAMOED-CLAMPED BEAM (nbeam=l)

WITHOUT BODY CONNECTED.

THE MATRIX "CONFIG" DENOTES THE STRUCTURAL CONFIGURATION

COL#1=BEAM I.D., COL#2-INBOARD BODY I.D., COL#3=OUTBOARD BODY
NEGATIVE SIGN "-" DENOTES WHICH BEAM IS USED TO DEFINE BODY AXES.

For the CANTILEVERED BEAM, BEAM1 links the Bodyl (EARTH) to

Body2(another clamped end). Bodyl uses the Inboard end of Beaml to
define its axes. Body2 uses the outboard end of Beaml to define
its axes.

CONFIG (i, i) =i

CONFIG (i, 2) =-i

CONFIG (i, 3) =-2
NB EAM= 1

DO 440 IBEAM = I,NBEAM

PRINT 777,CONFIG(IBEAM, I),CONFIG(IBEAM, 2),CONFIG(IBEAM, 3)
NA=I2*NBEAM

CALL BODFORM(CONFIG,NBEAM, BODREF,NBODY)

do 463 i=l,nbody

print 777, i,bodref(i,l),bodref(i,2)
CALL SET(WI,100,1)



C

C

C

BODY#1 INBOARD,
wI(1)=o.
INPUT FOR BEAM i,
LI=I30.

EIXI=999999999.0

EIyl=999999999.0

EIpl=400000000.0
MPLI=0.09556

IPLI=.2907

EAZI=999999999.0
FZI=0.

AGKXI=999999999.0

AGKyI=999999999.0
CALL SET (RII, 3, i)

RII (5) =0.
RII (6) =0.

RII (7) =0.

CALL TILDA(RII,DUM)

CALL MAKE(RII,DUM)

CALL SET(RIO,3,1)

RIO (5)=0.

RIO (6)=0.

RIO(7)=0.

CALL TILDA(RIO,DUM)

CALL MAKE(RIO,DUM)

CALL SET(TI,3,3)

TI(5)=I.
TI(9)=I.

TI(13)=I.

INPUT FOR BODY l(one clamped end)
MASSI=999999999.

CALL SET(INRTI,3,3)
INRTI (5) =999999999.0

INRTI (9) =999999999.0

INRTI (13) =999999999.0

PRINT 707, MASS1

INPUT FOR BODY 2 (another clamped
MASS2=999999999.0

CALL SET(INRT2,3,3)

INRT2(5)=999999999.0
INRT2(9)=999999999.0

INRT2(13)=999999999.0

PRINT 707, MASS2

CALL SET(E,NBEAM, 9)

E(5)=EIXI

E(6)=EIYI

E(7)=EAZI

E(8)=EIPI

E (9 ) =MPLI

E (i0) =IPLI

E (ii) =FZI

E (12 )=AGKXl

E(13)=AGKYI

CALL SET (L, NBEAM, i)
L(5)=LI

CALL SET (MASS, NBODY, i)

MASS (5 )=MASS1

MASS (6 )=MASS2

CALL MAKE (INRT, INRTI )

CALL JUXTV (INRT, INRT2, INRT)

CALL MAKE (T, TI)
CALL MAKE (R, R11 )

CALL JUXTV(R,RIO,R)
W=280.0

WINC=I.01
NIW=300

GO TO i000

BODY#2

end)

OUTBOARD



c
c
c

_00

C

C

1

31

92

30

29

28

3

999

998

***** THE COMMON PART OF THE MAIN PROGRAM *****

CALL SPIT(L,2H L)

CALL SPIT(E,2H E)

CALL SPIT(R,2H R)

CALL SPIT(T,2H T)

CALL SPIT(MASS,5H MASS)

CALL SPIT(INRT, 5H INRT)

CALL SET(DETNEW,NA, I)

DO 1 IW=I,NIW

DW=W*(WINC-I.)

W=W+DW

FORM FORCE AND MOMENT MATRICES "PF" AND "PM"
FORM LINEAR AND ANGULAR DEFLECTION MATRICES "QU" AND

CALL PQFORM(W,L,E,P,Q,DUM, DUN)

CALL SET(A, NA,NA)

CALL AFORM(W,A,BODREF,CONFIG,L,P,Q,R,T, INRT,MASS,

IDUM, DUN,DUO,DUP)
CALL ADD(I.,A,0.,A,A)

CALL WSEARCH(W,DW,A, DETNEW,DETOLD,WI)

CONTINUE

AD=I./6.283185

CALL ADD(AD,WI,0.,WI,FI)

CALL SPIT(FI,3H FI)

IF(ISHP)998,998,31
CONTINUE

NW=WI(1)+.01

DO 3 IW=I,NW

W=WI(IW+4)

CALL PQFORM(W,L,E,P,Q,DUM,DUN)
CALL AFORM(W,A, BODREF,CONFIG, L,P,Q,R,T, INRT,MASS,

IDUM, DUN,DUO, DUP)
CALL UPPER(A, DETNEW)

DETN=I.

DO 92 I = I,NA

DETN=DETN*DETNEW(I+4)

CALL SET(DUM, I,NA)

DUM (NA+4) =i.

CALL DIAG (A, DUM)

IF (IW-I) 29,30,29
CALL MAKE (SHAPE, DUM)

GO TO 28

CALL JUXTV(SHAPE,DUM, SHAPE)

CONTINUE

CONTINUE

IF(ISHP)998,998,999

CALL SPIT(SHAPE, 5HSHAPE)

STOP

END

"QS"

c

c

c

i
v

7O7

SUBROUTINES
***** ***** *****

SUBROUTINE AFORM (W, A, BODREF, CONFIG, L, P, Q, R, T, INRT, MASS,

IDUM, DUN, DUO, DUP)
INTEGER APPEND, BEAM1, BODREF, CONFIG, OBODY

REAL INRT, INRTI, INRTO, MASS, L
DIMENSION DUM(1300),DUN(1300),DUO(1300),DUP(1300),

2INRT (69), INRTI (13) ,MASS (14), L (9), R (94), RI (13), R1 (13),

3A(2004), P (436), PF (40), PM(40), Q (436), QU(40), QS (40),

4BODREF (i0,2), CONFIG(5,3), T (49), TBEAM(13), T1 (13),

5TIT (13), TRT (13), QUI (40), QSI (40), TI (13), RO (13),

6 INRTO (13)

FORMAT (7E15.4)

NBODY=MASS (i) +. 01



13
C
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NBEAM=L (i) +. 01
NA=NBEAM* 12

APPEND=NBODY

DO 2 IBEAM = I,NBEAM

CALL SET (TBEAM, 3,3 )

CALL SET(RI,3,3)

CALL SET(RO,3,3)

DO 13 IBLOCK = 1,9

TBEAM (IBLOCK+4 )=T ( (IBEAM* 3 -3 )*3 +IBLOCK+4 )

RI (IBLOCK+4 )=R ( (IBEAM* 6-6 ) "3 +IBLOCK+4 )

RO (IBLOCK+4 )=R ( (IBEAM* 6 -3 ) *3 +IBLOCK+ 4 )

FORM MATRIX "A" FOR INBOARD BODY

CALL SET (QU, 3,12)

CALL SET (QS, 3,12)

DO 12 IBLOCK = 1,36

QU (IBLOCK+4 )=Q ( (IBEAM* 12-12 ) * 12 +IBLOCK+4 )

QS (IBLOCK+4 ) =Q ( (IBEAM* 12 -9 ) *12 +IBLOCK+4 )
CALL TRANS (TBEAM, TIT)

IBODY=CONFIG (IBEAM, 2 )

IF (IBODY) 6,4,4
IBODY=- IBODY

ENREF=I .

GO TO 18

ENREF= 0 .

BEAMI=BODREF (IBODY, 1 )

IO=BODREF (IBODY, 2 )

IF (BEAMI-IBEAM) 70,71,70
CALL SET(TI,3,3)

CALL SET (QUI, 3,12)

CALL SET(QSI,3,12)

CALL SET(RI,3,3)
DO 72 IBLOCK = 1,9

T1 (IBLOCK+4 ) =T ( (BEAM1 *3 -3 ) *3 +IBLOCK+4 )

R1 (IBLOCK+4 ) =R ( (BEAM1* 6+3 *I0-6 ) "3 +IBLOCK+4 )

DO 73 IBLOCK = 1,36

QUI (IBLOCK+4) =Q ((BEAMI*I2+6*IO-12) *I2+IBLOCK+4)
QSI (IBLOCK+4) =Q((BEAMI*I2+6*IO-9) *I2+IBLOCK+4)

CALL MULT (TI, QUI, DUN)

CALL ADD(I.,RI,-I.,RI,DUM)

CALL MULT (DUM, TI, DUO)

CALL MULT (DUO, QSI, DUM)
CALL ADD (-i., DUN, -i., DUM, DUO)

CALL MULT (TIT, DUO, DUP)

CALL MULT (TI, QSI, DUM)

CALL MULT (TIT, DUM, DUN)

CALL ADD (-i., DUN, 0., DUN, DUN)

CALL JUXTV (DUP, DUN, DUO)

CALL JUXTV (QU, QS, DUP)

DO 75 IBLOCK = 1,6
DO 74 JBLOCK = 1,12

ID= (APPEND* 6+ IBLOCK- 1 ) *NA+JBLOCK+BEAMI * 12 - 8

A (ID) =DUO ( (IBLOCK-I ) * 12 +JBLOCK+4 )

DO 75 JBLOCK = 1,12

ID= (APPEND* 6 + IBLOCK- 1 ) *NA+JBLOCK+ IBEAM* 12 - 8

A (ID) =DUP ( (IBLOCK-1 ) * 12 +JBLOCK+ 4 )
AP PEND=AP PEND+ 1

CONTINUE

CONTINUE

EM=MASS (IBODY+ 4 )
CALL SET(INRTI,3,3)

DO 14 IBLOCK = 1,9

INRTI (IBLOCK+ 4 ) =INRT ( (IBODY* 3 -3 ) *3 +IBLOCK+4 )

CALL SET(PF, 3,12)

CALL SET (PM, 3,12)
DO 31 IBLOCK = 1,36

PF (IBLOCK+4 )=P ( (IBEAM* 12 -12 ) *I2+IBLOCK+4 )
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PM(IBLOCK+4) =P ( (IBEAM*12 -9 ) * 12+IBLOCK+4 )
W2=W*W
W2IN= i./W2
CALL MULT(RI, TBEAM,DUM)
CALL MULT(TIT, DUM,TRT)
FIRST BLOCK, FORCE EQUATIONS, INBOARD
IF (EM-999999999 . ) 86,87,86
AD=ENREF
AE-0 .
GO TO 88
AD=ENREF*EM
AE=W2IN
CONTINUE
CALL ADD(AD,QU,AE, PF, DUO)
CALL MULT(TRT, QS,DUN)
CALL ADD(i., DUO,+AD,DUN,DUO)
SECONDBLOCK, MOMENTEQUATIONS, INBOARD
CALL MULT(RI, TBEAM,DUM)
CALL MULT(DUM,PF, DUN)
CALL MULT(TBEAM,PM,DUM)
CALL ADD(+W2IN, DUM,+W2IN, DUN,DUP)
CALL MULT(TBEAM,QS,DUM)
CALL MULT(INRTI, DUM,DUN)
CALL ADD(i., DUP,ENREF,DUN,DUP)
CALL JUXTV(DUO,DUP,DUO)
DO 5 IBLOCK = 1,6
DO 5 JBLOCK = 1,12
A ( (IBODY* 6+IBLOCK-7 ) *NA+IBEAM*12+JBLOCK-8) =DUO( (IBLOCK- 1)

I*I2+JBLOCK+4 )
FORMMATRIX "A" FOR OUTBOARDBODY
CALL SET(QU,3,12)
CALL SET(QS, 3,12)
DO 19 IBLOCK = 1,36
QU(IBLOCK+4) =Q( (IBEAM*12- 6) * 12+IBLOCK+4)
QS(IBLOCK+4) =Q( (IBEAM*12 - 3) * 12+IBLOCK+4)
OBODY=CONFIG(IBEAM, 3)
IF (OBODY)15,15,16
ENREF=1.
OBODY=- OBODY
GO TO 17
ENREF=0.
BEAMI=BODREF(OBODY,i)
IO=BODREF(OBODY,2 )
IF (BEAMI-IBEAM) 80,81,80
CALL SET(TI,3,3)
CALL SET(QUI,3,12)
CALL SET(QSI,3,12)
CALL SET(RI,3,3)
DO 82 IBLOCK = 1,9
T1 (IBLOCK+4) =T ( (BEAM1* 3- 3) *3+IBLOCK+4)
R1 (IBLOCK+4) =R ( (BEAM1*3 -3 ) *3 + IBLOCK+4 )

DO 83 IBLOCK = 1,36

QUI (IBLOCK+4 )=Q ( (BEAM1*12+6* IO-12 ) *I2+IBLOCK+4 )

QSI (IBLOCK+4)=Q((BEAMI*I2+6*IO-9) *I2+IBLOCK+4)

MULT (TI, QUI, DUN)

ADD (i., RI, -i., RI, DUM)

MULT (DUM, TI, DUO)
MULT (DUO, QSI, DUM)

ADD (- i., DUN, - i., DUM, DUO )

MULT (TIT, DUO, DUP)

MULT (TI, QSI, DUM)

MULT (TIT, DUM, DUN)
ADD (-i., DUN, 0., DUN, DUN)

JUXTV (DUP, DUN, DUO )

JUXTV (QU, QS, DUP )
IBLOCK = i, 6

CALL

CALL

CALL
CALL

CALL

CALL

CALL

CALL

CALL
CALL

CALL

DO 85
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DO 84 JBLOCK = 1,12

ID= (APPEND* 6 + IBLOCK- 1 ) *NA+ JBLOCK+BEAMI *12 - 8

A (ID) =DUO ( (IBLOCK- 1 )* 12 +JBLOCK+4 )

DO 85 JBLOCK = 1,12

ID= (APPEND* 6 + IBLOCK- 1 ) *NA+JBLOCK+ IBEAM* 12 - 8

A (ID) =DUP ( (IBLOCK- 1 )* 12 +JBLOCK+4 )

APPEND=APPEND+ 1

CONTINUE

CONTINUE

EM=MASS (OBODY+ 4 )

CALL SET (INRTO, 3,3 )

DO 24 IBLOCK = 1,9

INRTO (IBLOCK+4 )=INRT ( (OBODY*3 -3 ) * 3 +IBLOCK+4 )

CALL SET(PF,3,12)

CALL SET(PM,3,12)

DO 33 IBLOCK = 1,36

PF (IBLOCK+4) =P ((IBEAM*I2-6) *I2+IBLOCK+4)

PM (IBLOCK+4) =P ( (IBEAM* 12-3 ) *I2+IBLOCK+4)

W2 =W*W
W2IN=I./W2

CALL MULT (RO, TBEAM, DUM)

CALL MULT (TIT, DUM, TRT)
FIRST BLOCK, FORCE EQUATIONS, OUTBOARD

IF (EM-999999999 .) 96,97,96
AD=ENREF

AE=0.

GO TO 98

AD= ENREF* EM

AE=W2 IN

CONTINUE

CALL ADD (AD, QU, AE, PF, DUO)

CALL MULT (TRT, QS, DUN)

CALL ADD (i., DUO, +AD, DUN, DUO)

SECOND BLOCK, MOMENT EQUATIONS, OUTBOARD

CALL MULT (RO, TBEAM, DUIM)

CALL MULT (DUM, PF, DUN)

CALL MULT (TBEAM, PM, DUM)

CALL ADD (+W2 IN, DUM, +W2 IN, DUN, DUP)

CALL MULT (TBEAM, QS, DUM)
CALL MULT (INRTO, DUM, DUN)

CALL ADD (i., DUP, ENREF, DUN, DUP)

CALL JUXTV (DUO, DUP, DUO)

DO 7 IBLOCK = 1,6

DO 7 JBLOCK = 1,12
A ( (OBODY* 6+ IBLOCK-7 ) *NA+ IBEAM* 12 +JBLOCK- 8 )=DUO ( (IBLOCK- 1 )

i* 12+JBLOCK+4 )
CONTINUE

RETURN

END

SUBROUTINE BODFORM (CONF IG ,NBEAM, BODREF ,NBODY)

INTEGER CONFIG, BODREF
DIMENSION CONFIG (5,3), BODREF (i0,2)

FORMAT (7Ii0)

JMAX=I

DO 50 IBEAM = I,NBEAM

J=CONFIG (IBEAM, 2 )
J2=J*J

IF (JMAX*JMAX-J2) i, 2,2

JMAX2 =J2

CONTINUE

IF (J) 51,51,52
J=-J

BODREF (J, 1 )=IBEAM

BODREF (J, 2 )= 0

J=CONFIG (IBEAM, 3 )
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J2=J*J

IF (JMAX*JMAX-J2) 3,4,4
JlVlAX2 =J2

CONTINUE

IF (J) 53,53,54
J=-J

BODREF (J, 1 )=IBEAM

BODREF (J, 2 ) =i

CONTINUE

CONTINUE
AD=JMAX2

NBODY=SQRT (AD) +. 01

DO 63 I = I,NBODY
PRINT 777,I,BODREF(I,I),BODREF(I,2)

RETURN

END

o, i

SUBROUTINE PFORM (W, L, Z, EIX, EIY, EAZ, EIP, MPL, IPL, FZ, AGKX, AGKY,

IPF, PM)

REAL L,MPL, IPL
DIMENSION PF(40),PM(40)

FORMAT (7E14 .5 )

W2 =W*W

W2 IN= i./W2

IF (EIX-FZ*FZ*. 071) 8,8,9
ARG=MPL / (FZ -EIX*MPL*W2/AGKX)

BXAB =W* SQRT (ARG)
BXCD=I8.42/L

GO TO i0

CONTINUE

AD=. 5* (MPL*W2/AGKX-FZ/EIX)

AE=MPL*W2/EIX

ARG=AD+ SQRT (AD*AD+AE)

BXAB= SQRT (ARG)
ARG= -AD+ SQRT (AD*AD+AE)

BXCD=SQRT (ARG)
CONTINUE

IF (EIY-FZ*FZ*. 071) Ii, ii, 12

ARG=MPL/(FZ-EIY*MPL*W2/AGKY)

BYAB =W* SQRT (ARG)
BYCD=I8.42/L

GO TO 13

CONTINUE

AD=. 5* (MPL*W2/AGKY-FZ/EIY)

AE=MPL*W2/EIY

ARG=AD+SQRT (AD*AD+AE)

BYAB= SQRT (ARG)

ARG= -AD+ SQRT (AD*AD+AE)

BYCD= SQRT (ARG)
CONTINUE

BZ=SQRT (MPL/EAZ) *W

BP=SQRT (IPL/EIP) *W
FORCE MATRIX FOR BEAM

CALL SET(PF,3,12)

BXAB2 =BXAB* BXAB

BXCD2 =BXCD* BXCD

BXAB3 =BXAB 2 *BXAB
BXCD3 =BXCD2 *BXCD

BYAB 2 =BYAB* BYAB

BYCD2 =BYCD* BYCD

BYAB3 =BYAB2 *BYAB

BYCD3 =BYCD2 *BYCD

IF(Z)2,3,2

PF (5 )=+BXAB3 * EIX+BXAB*FZ

PF(6)=0.
PF (7) =-BXCD3 *EIX-BXCD*FZ
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PF(8)=0.
PF (21 ) =+BYAB3*EIY+BYAB* FZ
PF(22) =0.
PF (23) =-BYCD3*EIY-BYCD*FZ
PF(24)=0.
PF (37) =BZ*EAZ
PF(38) =0.
GO TO 4
PF(5) =-BXAB3*EIX*COS (BXAB*L) -BXAB*FZ*COS (BXAB*L)
PF (6) = BXAB3*EIX*SIN (BXAB*L) +BXAB*FZ*SIN(BXAB*L)
PF (7) = BXCD3*EIX*COSH (BXCD*L) -BXCD*FZ*COSH(BXCD*L)
PF (8) = BXCD3*EIX*SINH (BXCD*L) -BXCD*FZ*SINH (BXCD*L)
PF (2 i) =-BYAB3*EIY*COS (BYAB*L) -BYAB*FZ*COS (BYAB*L)
PF (22) = BYAB3*EIY*SIN (BYAB*L) +BYAB*FZ*SIN (BYAB*L)
PF (23) = BYCD3*EIY*COSH (BYCD*L) -BYCD*FZ*COSH(BYCD*L)
PF (24) = BYCD3*EIY*SINH (BYCD*L) -BYCD*FZ*SINH (BYCD*L)
PF (37) =-BZ*EAZ*COS (BZ*L)
PF (38) =BZ*EAZ*SIN (BZ*L)
CONTINUE
MOMENTMATRIX FOR BEAM
CALL SET(PM,3,12)
IF(Z)5,6,5
PM(17) =0.
PM(18 ) =+BXAB2*EIX+FZ
PM(19) =0.

PM (20 )=-BXCD2 *EIX+FZ

PM(9) =0.
PM (i0 ) =-BYAB2 *EIY-FZ

PM (ii) =0.

PM (12 )=+BYCD2 *EIY-FZ

PM(39) =BP*EIP

PM(40) =0.
GO TO 7

PM (17 )=-BXAB2 *EIX*SIN (BXAB*L) -FZ*SIN (BXAB*L)

PM (18 )=-BXAB2 *EIX*COS (BXAB*L) -FZ*COS (BXAB*L)

PM (19 )=BXCD2 *EIX* SINH (BXCD*L) -FZ *SINH (BXCD*L)
PM (20 )=BXCD2 *EIX*COSH (BXCD* L ) -FZ *COSH (BXCD* L )

PM (9 )=BYAB2 *EIY*SIN (BYAB*L) +FZ*SIN (BYAB*L)

PM (i0 )=BYAB2 *EIY*COS (BYAB*L) +FZ*COS (BYAB*L)

PM (ii )=-BYCD2 *EIY* SINH (BYCD*L) +FZ *SINH (BYCD*L)

PM (12 )=-BYCD2 *EIY*COSH (BYCD*L) +FZ*COSH (BYCD*L)

PM (39) =-BP*EIP*COS (BP*L)

PM (40 )=BP*EIP* SIN (BP*L)
CONTINUE

RETURN

END

SUBROUTINE QFORIK (W, L, Z, EIX, EIY, EAZ, EIP, MPL, IPL, FZ, AGKX, AGKY, QU, QS)

REAL L, MPL, IPL

DIMENSION QU(40),QS(40)
W2 =W*W

IF (EIX-FZ*FZ*. 071) i, i, 2

ARG=MPL / (FZ-EIX*MPL*W2/AGKX)

BXAB=W* SQRT (ARG)
BXCD= 18.42/L

GO TO 3

CONTINUE

AD=. 5* (MPL*W2/AGKX-FZ/EIX)

AE=MPL*W2/EIX

ARG=AD+ SQRT (AD*AD+AE)

BXAB= SQRT (ARG)

ARG= -AD+ SQRT (AD*AD+AE)

BXCD= SQRT (ARG)
CONTINUE

IF (EIY-FZ*FZ*. 071) 4,4,5

ARG=MPL / (FZ-EIY*MPL*W2/AGKY)
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BYAB=W* SQRT (ARG)

BYCD=I8.42/L
GO TO 6

CONTINUE

A/D=. 5* (MPL*W2/AGKY-FZ/EIY)
AE=MPL*W2/EIY

ARG=AD+ SQRT (AD*AD+AE)

BYAB = SQRT (ARG)

ARG= -AD+ SQRT (AD*AD+AE)

BYCD= SQRT (ARG)
CONTINUE

BZ=SQRT (MPL/EAZ) *W

BP=SQRT (IPL/EIP) *W
AD=I.

LINEAR DEFLECTION MATRIX

CALL SET(QU,3,12)

IF(Z)8,9,8

QU(5) =0.

Qu(6) =1.
Qu (7) =0.
QU (8) =i.

QU (21) =0.

QU (22) =i.

QU(23)=0.

QU (24) =i.

QU (37) =0.

QU (38) =i.
GO TO i0
CONTINUE

QU(5) =SIN (BXAB*L)

QU (6) =COS (BXAB*L)

QU (7) =SINH (BXCD*L)

QU (8 )=COSH (BXCD*L)

QU (21) =SIN (BYAB*L)

QU (22) =COS (BYAB*L)

QU (23 )=SINH (BYCD*L)

QU (24) =COSH (BYCD*L)

QU (37) =SIN (BZ*L)

QU (38) =COS (BZ*L)

CALL ADD (AD, QU, 0., QU, QU)
ANGULAR DEFLECTION MATRIX

CALL SET(QS,3,12)

IF (Z) ii, 12, ii

QS (17 )=BXAB

QS(18)=0.

QS (19) =BXCD

QS(20)=0.

QS (9 )=-BYAB

QS(10)=0.

QS (ii) =-BYCD
QS(12)=0.

QS(39)=0.

QS (40)=-i.
GO TO 13

CONTINUE

QS (17) =BXAB*COS (BXAB*L)

QS (18) =-BXAB*SIN (BXAB*L)

QS (19 )=BXCD*COSH (BXCD*L)

QS (20 )=BXCD* S INH (BXCD* L)
QS (9 ) =-BYAB*COS (BYAB* L )

QS (i0 ) =BYAB* SIN (BYAB*L)

QS (ii ) =-BYCD*COSH (BYCD*L)

QS (12 ) =-BYCD* SINH (BYCD*L )

QS (39) =-SIN(BP*L)

QS (40) =-COS (BP*L)

CALL ADD(-I.,QS,0.,QS,QS)
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RETURN
END /

SUBROUTINE PQFORM (W, L, E, P, Q, DUM, DUN)

REAL L,LI,MPL, IPL

DIMENSION L(9),E(5),P(5),Q(5),DUM(5),DUN(5)

NBEAM=L (i) +. 01

DO 1 IBEAM = I,NBEAM

LI=L (IBEAM+ 4 )

EIX=E ((IBEAM-I) *9+5)

EIY=E ((IBEAM-I) *9+6)

EAZ=E ((IBEAM-I) *9+7)

EIP=E ((IBEAM-I) *9+8)

MPL=E ((IBEAM-I) *9+9 )

IPL=E ((IBEAM-I) "9+10 )

FZ=E ((IBEAM-I) "9+11)

AGKX=E ((IBEAM-I) "9+12)

AGKY=E ( (IBEAM- 1 )"9+13 )

CALL PFORM (W, LI, 0., EIX, EIY, EAZ, EIP, MPL, IPL, FZ, AGKX, AGKY, DUM
i, DUN)

IF (IBEAM-I) 2,3,2

CALL MAKE (P, DUM)

GO TO 4

CALL JUXTV (P, DUM, P)

CALL JUXTV (P, DUN, P)

CALL QFORM(W, LI, 0. ,EIX, EIY, EAZ, EIP,MPL, IPL, FZ,AGKX,

IAGKY, DUM, DUN)

IF (IBEAM-I) 5,6,5

CALL MAKE (Q, DUM)
GO TO 7

CALL JUXTV (Q, DUM, Q )

CALL JUXTV (Q, DUN, Q)

CALL PFORM (W, LI, LI,

IAGKY, DUM, DUN)

CALL JUXTV (P, DUM, P)

CALL JUXTV (P, DUN, P)

CALL QFORM(W, LI, LI,

IAGKY, DUM, DUN)

CALL JUXTV (Q, DUM, Q)

CALL JUXTV (Q, DUN, Q)
RETURN

END

EIX, EIY, EAZ, EIP, MPL, IPL, FZ, AGKX,

EIX, ElY, EAZ, EIP, MPL, IPL, FZ, AGKX,

SUBROUTINE WSEARCH (W, DW, A, DETNEW, DETOLD, WI )

DIMENSION A (5 ), DETOLD (5 ), DETNEW (5 ), WI (5 )
FORMAT (7E12.5)

NA=A (i)

A77=A(77)

CALL MAKE (DETOLD, DETNEW)
DETO=I.

DO 3 I =I,NA

DETO=DETO*DETOLD (I+4 )
CALL UPPER (A, DETNEW)
DETN= 1 .

DO 1 I=I,NA

DETN= DETN* DETNEW (I + 4 )
FREQ=W/6. 2831853

PRINT 707, FREQ, A77, DETN

IF (DETO*DETN) 4,2,2

WROOT=W-DW- DETO* DW/(DETN-DETO )

NW=WI (i) +i. 001
WI (i) =NW

WI (NW+ 4 )=WROOT

CALL SPIT(WI,3H WI)
RETURN

END
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SUBROUTINE UPPER (A, DETA)
GERNERATES THE DETERMINANT, DETA,OF MATRIX A
DIMENSION A(5),DETA(5)
FORMAT (2E15.7)

N = A(1) + .01
NMI=N- 1
NPI =N+ 1
DO 5 K = I,NMI
KROW=K
AKK=A (K*N+K-N+4)

IF (AKK) i, 2,1
KROW= KROW+ 1

IF (KROW-N) 7,7,5
AKK=A (KROW*N+K-N+ 4 )
IF (AKK) 3,2,3
DO 4 J=K,N
AD=A (K*N+J-N+4)
A (K*N+J-N+4) =A (KROW*N+J-N+4)

A (KROW*N+J-N+4) =AD
AKKI = i./AKK
K1 = K + 1
DO 6 KI = KI,N
AKIK = A(KI*N + K - N+4)*AKKI
A(KI*N + K - N + 4)=0.
DO 6 L = KI,N
KIL = KI*N + L - N + 4

A(KIL) = A(KIL) - AKIK*A(K*N + L - N + 4)
CONTINUE
CONTINUE
AD=I.

CALL SET (DETA, N, i)
DO 16 I = I,N
DETA(I+4)=A(I*N + I - N + 4)
EYE =I
AD=AD* DETA (I+4 )

IF (AD) 26,27,26
PRINT 10 i, AD, EYE
AD--I.
CONTINUE
CONTINUE
RETURN
END

SUBROUTINE DIAG (A, SHAPE)
DIMENSION A (5 ), SHAPE (5 )
FORMAT (II0,5E12.4)
NA=A (I) +. 01
NAMI =NA- 1
DO 1 I = I,NAMI
IPI=NA-I+I
AD=0 .

DO 2 J = IPI,NA
AD=AD- SHAPE (J+4) *A ((NA-I- 1 )*NA+J+4 )
SHAPE (NA-I+4) =AD/A ((NA-I- 1 )*NA+NA- I+4 )
CONTINUE
RETURN
END
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ABSTRACT

During the past three decades the finite element method matured gradually and dominated

almost exclusively all the engineering applications. But the practice of generating complex finite

element dynamic models of aerospace structures has revealed a number of shortcomings. First,

the high dimensionality of the models requires an order-reduction process before a control system

can be designed. However, seemingly unimportant modes can be inadvertently eliminated which

prove later to be significant to control system performance and stability. Second, use of finite

element models for dynamic system identification is generally very difficult because of the

extremely large amount of unknowns. Third, the structural damping is generally added ad hoc

after generating an undamped model. Inaccurate damping results, especially for the modes which

couple different types of motion.

In contrast, distributed parameter models offer an alternative to finite element models for

overall dynamic analysis and control synthesis for aerospace and aeronautical structures. First,

the modal order does not have to be reduced prior to the inclusion of control system dynamics,

which eliminates the risk involved with modal truncation. Second, distributed parameter models

inherently involve fewer parameters, thereby enabling more accurate parameter estimation using

experimental data. Third, it is possible to include the damping in the basic model, thereby

increasing the accuracy of the structural damping. Recently, distributed parameter models have



been made for some large spacestructures. Distributedparametermodelsmay provide an
efficientcomplementarymethodologyto the finite element approach.

The software package PDEMOD was initialized by the late Lawrence W. Taylor, Jr. at

NASA Langley Research Center during the middle of the 1980's. The initial interest in the

package PDEMOD was to model the structural dynamics of general spacecraft configurations by

using the distributed parameter approach, which consists of a three-dimensional network of

flexible beams and rigid bodies. The building blocks from which three-dimensional configurations

can be constructed consist of (1) beams, which have bending in two directions, torsion, and

elongation degrees of freedom, and (2) rigid bodies, which are connected by any network of beam

elements. The full six degrees of freedom are allowed at either end of the beam. Rigid bodies can

be attached to the beam at any angle or body location. The modified Bernoulli-Euler beam

equation is used to represent the bending, the wave equations for torsion and elongation.

A system of partial differential equations (PDEs) is formulated and connected at the

elements' boundaries based on the compatibility conditions. The equations of motion for any

number of rigid bodies are written in the frequency domain and in terms of the coefficients of the

sinusoidal and hyperbolic functions which comprise the mode shapes. The force and moment

vectors for both ends of a single beam dement can be described in terms of the spatial derivatives

of the solutions of the corresponding PDE's. Distributed parameter models can therefore be

generated for any three-dimensional configurations describable by PDEs joined at their

boundaries. Because of Mr. Taylor's sudden demise, it becomes an urgent task to summarize and

sift his research achievements and make them available to the other researchers. We have

continued his work and recovered the basic functions of this package which may provide an

opportunity to more researchers to apply distributed parameter modeling techniques to a variety

of aerospace structures. The verification of the code has been conducted by comparing the results

with those examples for which the exact theoretical solutions can be obtained.

By investigating the potential of the distributed parameter modeling technique, we expect

that the PDEMOD may be further developed in the following aspects: (1) structural dynamics,

modal frequencies and mode shapes; (2) parameter estimation of modal characteristics; (3)

structural damping; (4) control system dynamics; and (5) design optimization. In its present

stage, however, only the first of the functions has been completed and included in the package.

Meanwhile, a massive effort is being conducted which is expected to modify the mathematical

model and global system generating procedure to develop the methodology for control analysis

purpose. Instead of using the coefficients of the solution functions, the transfer matrix may be

used finally, which provides a much more convenient way to describe the state-vector transition

from one point of the structure to the other. All these research outputs are planned to be contents

of the modified version of the package.

INTRODUCTION

During the past three decades the finite element method had become extremely popular in

a very wide field of engineering. As early as the 1960's, the aircraft industry had devdoped in-

house finite element programs. During the 1970's, some general-purpose finite element programs

such as NASTRAN were released for public use, bringing with them a significant technology base

that led to development of numerous commercial finite element software systems. Later, the



variouscommercialpackageswere refined, and their technology base was expanded. NASA's

research in computational structures technology (CST)t_ 1 is helping to develop the finite element

analysis to a new stage that is capable of using a general automated unstructured grid generation

to discretize the aerodynamic field and the structure for thermal and structural analysis [2].

But such a treatment having a very large number of elements is usually very expensive and

time consuming. In static finite element analyses, models having over 10,000 degrees of freedom

(DOF) are not uncommon. In fact, a finite element model of a helicopter fuselage currently under

design contains about 27,000 grid points and 149,000 DOF. It is economically unfeasible and

normally unnecessary to conduct dynamic analysis with this many unknowns. Most of the

dynamic models based on the finite element approach must resort to modal truncation techniques

to reduce the number of unknowns prior to dynamic analysis. However, the control spillover

resulting from the modal truncation may lead to degradation of control system performance, or

even create instabilitYt31.

The configuration of large space structures usually has the following common

characteristics: extremely large dimension, light-weight design, high flexibility, rather uniform

mass and stiffness distribution, low and closely spaced natural frequencies, and slight and/or

improperly modeled damping. Structures with these characteristics are essentially distributed

parameter systems by nature, and should be most accurately modeled as a continuously distributed

mass and stiffness over the entire structural area rather than a sequence of finite mass elements

coupled together as the finite element approach does.

In contrast, distributed parameter modeling provides a very practical approach for overall

dynamic analysis and control synthesis for aerospace and aeronautical structures. Recently,

distributed parameter models have been made for some large space structures, such as, the

Spacecraft Control Laboratory Experiment (SCOLE)[41, Solar Array Flight Experiment (SAFE)tsI,

Space Station, Freedomtrl, Low-power Atmospheric Compensation Experiment (LACE) satellite

model tTl, and the Aerospace Large Flexible Manipulator, s1. The fundamental advantage of using

the distributed parameter approach is to decrease the number of unknowns significantly. In the

preliminary design stage, the detailed structural design is often neglected; therefore, a simple but

efficient global structural model may be more beneficial to weigh the trade-off between the

performance and cost, between the structural penalty and control system consummation, etc.

Distributed parameter models may provide an efficient complementary methodology to the finite

element approach.

The software package PDEMOD was initialized by the late Lawrence W. Taylor, Jr. at

NASA Langley Research Center during the middle of the 1980's. The first release of his work on

PDEMOD package was in 198719,_0,n J. The initial interest in the package PDEMOD was to model

the structural dynamics of general spacecraft configurations by using the distributed parameter

approach, which consists of three-dimensional network of flexible beams and rigid bodies. The

building blocks from which three-dimensional configurations can be constructed consist of (1)

beams, which have bending in two directions, torsion, and elongation degrees of freedom, and (2)

rigid bodies, which are connected by any network of beam elements. The full six degrees of

freedom are allowed at either end of the beam. Rigid bodies can be attached to the beam at any

angle or body location. The modified Bernoulli-Euler beam equation is used to represent the

bending, the wave equations for torsion and elongation.

A system of partial differential equations 0_DEs) is formulated and connected at the

elements' boundaries based on the compatibility conditions. The equations of motion for any



numberof rigid bodies are written in the frequency domain and in terms of the coefficients of the

sinusoidal and hyperbolic functions which comprise the mode shapes. The force and moment

vectors for both ends of a single beam element can be described in terms of the spatial derivatives

of the solutions of the corresponding PDE's. Distributed parameter models can therefore be

generated for any three-dimensional configurations describable by PDEs joined at their

boundaries. The manual labor of generating such models is therefore avoided.

Because of Mr. Taylor's sudden demise, it becomes an urgent task to summarize and silt
his research achievements and make them available to the other researchers. We continued his

work and recovered the basic functions of this package which may provide an opportunity to

more researchers to apply distributed parameter modeling techniques to a variety of aerospace

structures. The verification of the code has been conducted by comparing the results with those

examples for which the exact theoretical solutions can be obtained, for instance, a simple beam

with various boundary conditions, etc.

By investigating the potential of the distributed parameter modeling technique, we expect

that the PDEMOD may be further developed in the following aspects: (1) structural dynamics,

modal fi'equencies and mode shapes; (2) parameter estimation of modal characteristics; (3)

structural damping; (4) control system dynamics; and (5) design optimization. In its present

stage, however, only the first of the functions has been completed and included in the package.

Meanwhile, a massive effort is being conducted which is expected to modify the mathematical

model and global system generating proceduretT,12 j to develop the methodology for control

analysis purposet13,141. Instead of using the coefficients of the solution functions, the transfer

matrix may be used finally, which provides a much more convenient way to describe the state-

vector transition from one point of the structure to the other. All these research outputs are

planned to be contents of the modified version of the package.

PARTIAL DIFFERENTIAL EQUATIONS (PDEs)

A complex large space structure can be decomposed into simple pieces. A network of

distributed parameter elements and the attached rigid bodies are connected to represent the

structural dynamics of the complex flexible spacecraft. Each flexible beam element exhibits lateral

bending u and v in two axes, axial deformation w, and torsion _, as shown in Fig. 1, which can be

independently described by a variety ofPDEst151.

Figure 1 A Beam Element

The bending behavior of a beam element can be described by a modified Bernoulli-Euler

beam equation which includes Euler bending stiffness, Timoshenko shear, and axial-force stiffness

for lateral deflections in the x-z and y-z planes. The PDE for bending in the x-z plane is

4



mix'+ EI_u'" + GAii" + Fou" = q_(z,t) (1)

The corresponding equation for bending in the y-z plane is

mi; + Ely v'" + GAi, "° + Fov"= qy (z, t) (2)

The axial and torsional dynamics are represented by wave equations,

and

m_ - EAw" = F=(z, t) (3)

Jvfft- Gl_,llt"= M_ (z,t) (4)

respectively. The PDEs" provide the relationships between the modal frequency and the

eigenvalues for the mode shape functions. The Euler and wave equations can be solved for the

zero damping cases to produce the following relationships between the modal frequency co and

the eigenvalue 13[16r For bending in the x-z plane,

1 (moo _ F o _ 11(m(..O = F o "_ mCO2

2. =+-- --+-- + -- --+_ F__]_

For bending in the y-z plane,

2 2
l(mco 2 F o _ Illmo Fo_ moo 2

2. =+-- --+-- + -- --+_ E&'-21oA EJ  #2[oA Es,J +

For elongation and torsion, we have

and

respectively.

(6)

me°2 (7)/3,

Jr'c°2 (8)
o4

MODE SHAPE FUNCTIONS

The solutions of these partial differential equations for zero damping produce the

sinusoidal and hyperbolic spatial equations which comprise the mode shape functions. For the

case that F0=0, the bending mode shape in the x-z plane is,



u = A x sinfl=z+B,, cosfl=z + C, sinhflxz+D= coshfl=z (9)

Similarly, for the bending in the x-z plane the mode shape function is,

v: Ay sin flyz + By cosflyz + Cy sinh flyz + Dy cosh flyz (lO)

The undamped mode shape function for elongation along the z-axis is

w = A_ sin fizz + B, cosfl, z (11)

The undamped mode shape function for torsion about the z-axis is

V = Av sinflvz+Bv cosflvz (12)

These undamped mode shape functions are expected to be good approximations to the

exact solutions for low level of damping. The mode shape of the entire configuration consists of

all these functions, repeated for each beam element. Because of bending in two directions,

elongation, and torsion, a total of 12 coefficients are needed for each beam element. A vector of

the coefficients of these sinusoidal and hyperbolic functions is defined as the mode shape

parameter vector,

{o}=[AxB C D A,B,C,D,A.B.A B,]" (13)

The translational deflection vector is defined as,

{u}= = z {o}

where,

rQ" o o o o o o o oq

[Q,(z)]=[ _ o o 0 Q_5 Q_6 Q_7 Q_' o o o lo
0 0 0 0 0 0 0 Q_9 Q_._o o o

(14)

the non-zero elements of the matrix [Q..(z)] are as follows,

Q_' = sin fl_z

Q_s= sin/3yz

Q_9 = sin Ez

Qj2 = cosflxz

Q:6 = cos3,z

Q:.lo = cosflz z

Q_3 = sinh flxz

Q_7 = sinh flyz

O_4 = cosh fl=z

Q_' = coshflyz

The angular deflection vector is defined as,

6



where,

{ui}{u,}= =[o,(z)]{o}

rg_,g_,g?g_ , o o o o oo o o11

[Q,(z)]=[o o o o Q:5 Q z6 Q27 Q2S o o o o [

Lo o o o o o o o ooo2"' O,_"_.]

(15)

the non-zero elements of the matrix [Q,(z)] are as follows,

O_'=/3,cos/_:
O,_'=/3,cos/3,z
Q_.t, = sin,8,,:z

Q_: = -/3, sin t3:

O_,6=-_y sinjSyz

Q;.'==cos/3,,z

FORCES AND MOMENTS

Next, it is necessary to express the forces and moments at either end of the beam element

in terms of the mode shape parameter vector {0}. The force vector is as

r"..-1F,
F, LEAw'J

(16)

where,

Fp_" G" ?_' G' o o o o o o o_]-

[PF(z)]=[O000P:500 0 0 0 p260 p:70 P:8 00 p:9 .p3.10F0 0 ]0 V0

the non-zero elements of the matrix [Pr(z)] are as follows,

G' =-#',EI, cos/L=
G _ cosh/3,z= [3_EI,

Py =-_EIy cos/3yz

P:.'=/3;E:,cosh/3,,z
?7' =/3,EAcos#,=

P_2 = ,6_E1, sin 13,z

P_" = ,_EI, sinh/3,z

P_: = _3yEIy sin _yz

P._' = _3yEIy sinh _yZ

p_.,o =-/3,EA sinfl, z

The moment vector can be expressed as

7



{}E.1{M}

M, LcI,_J
|

(]7)

where,

!-P#,p_,'Pg P_; o o o o oo o o-I,
[_.(_)]=1o o o o P_.'p_.' p._' _.' o o o o'

[o o o o o o o ooop,.,, ,,_J

the non-zero elements of the matrix [Pra(z)] are as follows,

P_ = -fl=ZE/x sin flxz

P_ = fl:=EI,, sinh fl, z

Pff = -fl=yEl y sin flyz

p_7 = fl_EIy sinh flyz

py'= _G_ _os_

p;J=-_EI, cos/L=
P_ = fl==EI= cosh fl=z

Pff = -fl_EIy cosfl, z

Pff = fl_E[, cosh flyz

p,_,2 =_flv, Gi_, sin flvz

It is also necessary to account for changes in axes from each beam to the body to which it

is attached, and for points of attachment at some distance from the center of gravity of the body.

The forces and moments that the beam i applies to the bodyj expressed in the body j's coordinate

system are,

• {F}j,=[Tlj,{F}o.=[r]j,[P,],{O},

{M},,=[T],,({M},j +tR],,{F},j)=[T],,([P,] +[R],,[P_],){O},

(18)

(19)

where, the coordinate-transformation matrix from the beam i's coordinate system to the body j's

coordinate system is

cos(%,x,)
IT]j,=/cos(Y,.,=,)

k

cos(%,y,) cos(X,,=,)]
cos(Y_.,y,) c°s(YJ'zi)i
cos(Zj,y,) cos(Zj,z_) J

(20)

the eccentric matrix at the attachment point between the beam i and body j is

0 -r z ry j
[R]j, o= rz -r x

-r r rx 0 ji

(21)



RIGID BODY MOTIONS

A Newtonian or inertial flame of reference XoYoZ0 is used for the motions of all beam

elements and rigid bodies.

X0 Bodyi

amk

//I/ _,.._/ Bodyj_

_ m-4=o |at t:to] ZO

Figure 2 Rigid Body Motion

Consider body j connecting several beams, of which beam k is taken into account as a

datum. From Fig.2, we have

at time t--t0: /_oo =/_0 + ro

at time t---t: /_o, =/_oo +f, =/_ +ro +u,

On the other hand, /_o,=/_ +_,, so,

&, =&,-_ =_ +to+n,-e, = &0+f, +eoXn; (22)

where, fit and fi; are the translational and angular deflection vectors at the attachment point

between the body j and the beam k, respectively, and the vector difference ro-rt has been

expressed as the vector cross product of Fo and fi;, i.e. A_ = ro -r, = ro x_, which can also be

written in matrix form as

i =[reo
a_ -_ _ o

Therefore, Eq.22 can be written in matrix form as

(23)

9



{Rc°}J,= {Rc°}Jo+[ T] _k{u}jk, +[R] j_[ T].,, {u'} jk, (24)

Differentiating Eq.24, we get the acceleration of the body j's center of gravity (C.G.),

= + (25)

The angular acceleration of the body j is simply expressed as

{e} j = [ T].,_,{//'}ik (26)

STRUCTURAL DYNAMIC EQUATIONS

The equations of motion for the connected bodies and elements consist of blocks of terms,

assembled in an order dictated by the body and beam indices. The mass times the acceleration of

each body is related to the sum of forces caused by each beam element and each applied force.

[m],{Rco}/= Z{F}ji +Z{f},,.+{g}
i m

(27)

where, ___,{F}jt is the sum of the i-beam forces acting on the body j; Z{f}j,, is the sum of the
i ,n

m-applied forces acting on the body j; {g} is the gravitational vector. It is similar for the moment

equation,

=Z[tM ;,+[zJ,j[RJ;,Irlj, +ZIr].,[Rl;olvl;.{/};o(2s)
t n m

where, Y__{M}j, is the sum of the i-beam moments acting on the body j; _[ T],j. [R] j_[T] j; {F}j,
I i

is the sum of the moments acting on the bodyj caused by the i-beam forces {F}j_; _{M}j,, is
n

the sum of the n-applied moments acting on the body j; and _[T],,j[R]j,,[T]j,,{f}j,, is the sum of

the moments caused by the m-applied forces acting on the body j.

For the case of without applied forces and moments and neglecting gravity force, referring

to Eqs.25 and 26, we derive the following two equations. From the force equation,

[ml_.([T]jk {/i}sk +[Rljk [T]j.k {/i'}jk) = Y_,{F}j;
t

From the moment equation,

(29)

I:l,
i

(30)

10



Let us expressbothsidesof Eqs.29and30 in termsof themodeshapeparametervector,then,

and

-_2 [m].,.([ T] ik [Q,,], +[R] j,[ T] j,[Q,]k){O}j, = __,[ T] j,[Pp], {0},
i

(31)

(32)

Eqs.31 and 32 are the structural dynamic equations for the most general configurations. To

demonstrate the overall procedure more clearly, let's assume that there is only one beam element

attached to the body j, that is, i=k=l. In this case, Eqs.31 and 32 will be simplified as

[A_] {0}, ={0} (33-1)
3xl2 12xl

where,

[AM]{O} , ={0} (33-1)
3,'<12 12xl

[Av ] = [T] i, [Q., ], + [R].,.,[ T] j, [Q,], + _ [m]_.' [ T] j,[PF ],

[A.] =[r],,[O,]+ j,

Two equations in Eq.33 may be combined as

[A] {0}, ={0} (34)
6x12 12xl

where the system matrix [A] consists of the two block matrices [AF] and [AM]. We can see that

the number of equations is less than the number of unknown parameters. The difference is six.

This is because there are six rigid-body degrees of freedom (d.o.f.s) for this particular one-body-

one-beam system. We should have, therefore, six constraint equations to fix the six rigid-body

d.o.f.s. For most common cases, six boundary conditions provide sex constraint equations, which

can also be expressed in terms of the mode shape parameter vector {0}i, but the format of the

equations depends on what the specific boundary conditions are. Superimposing the constraint

equations into Eq.34, we obtain a new system dynamic equation

[A--] {0}, ={0} (35)
12x12 12xl

which has a full-rank system matrix [ A-] for any values of circular frequencies except the natural

frequencies. Based on the condition that Det[A-] = O, the natural frequencies of the system can be

determined.

For general configurations, the structural dynamic equation may become very

complicated, but the procedure to generate the equation is the same as stated. In general, for a

structural system consisting of J bodies and I beams, the structural dynamic equation has the form

of

11



[A] {O}, ={0} (36)
(6*J)x(12*l) (12*l)xl

The difference between the number of unknowns and the number of equations is exactly equal to

the number of rigid-body d.o.f.s. To fix the rigid-body d.o.f.s, it is sometimes necessary to

consider the compatibility conditions besides the boundary conditions. The following two special

cases must be paid more attention.

(1) For the case that a rigid body may have more than one beam element attached as shown in

Fig.3 where two beams are attached to the body j, additional constraint equations must be added

to the system equation, Eq.36, which appears as for this particular example in the figure,

[A] {0} ={0} (37)
12x24 24xi ..

It is clear that 12 extra equations are needed to fit the two bodies' rigid-body d.o.f.s. While the

boundary conditions provides six equations, the other six equations must be found from the

compatibility conditions.

beam il

Figure 3 A Rigid Body Attached by Two Beam Elements

To account for the continuity in translational deflection at the two attachment points, the

constraint equation must be satisfied,

[T] j.;, {u}j., - [R] j.;, [T]j.,, {u'}j., = [ T] j.,.={u}j.,= - [R] j.n [T] j.n {u'}.:.,= (38)

The constraint equation for ensuring continuity in the angular deflection at the two attachment

points is

[ T]j.,,{u'}i.,, = [T] {u'};.,= (39)

Expressing Eqs.38 and 39 in terms of the mode shape parameter vectors of the two beams, we

have

and

([T]u,[Q.],,-[R]u,[T]u,[Q.],,){O},, =([T]s.,=[Q.],2-[R].u=[T],,2[Q.],2){O},2 (40)

[T] :..[Q.],1{O}, t = [T] j.,2[Q.],2 {O},2 (41)

Combining Eqs.40 and 41, we find the six additional equations.

12



(2) For the case that a beam connects two rigid bodies at its two ends as shown in Fig.4

where beam i connects two bodies. More discussion must be addressed for this case. Apparently,

it seems that the system equation, Eq.36, had a full-rank system matrix, since Eq.36 appears as for

this particular example in the figure,

[A] {O}, = {0} (42)
12x12 12x[

J E--]bodyj2

Figure 4 A Beam Element Connecting Two Rigid Bodies

But, it is wrong. The problem is that body j_ and body j2 connect to the beam i at different

attachment points. Looking back to Eqs.14 to 17, and 31, we find that the components of the

system matrix [A], such as [Qu(z)], [Q,(z)], [P_(z)], [PM(z)], are functions of the beam's

longitudinal coordinate z. Based upon the connection between body j_ and beam i, a set of

equations, which is the same as Eq.34, can be found,

[ A.,._(z, = 0)] {0}, = {0} (43-1)
6:<12 12xl

Similar equation exists between body j2 and beam i,

[ Aj2 (z, = L i)] {O}, = {0} (43-2)
6×12 12xl

The two equations in Eq.43 are not, however, independent since the system matrices [Ajl] and

[Aj2] are both related to the same beam element, beam i. It can be proven that these two matrices

are related by a constant matrix [O] which can be derived from beam i's PDEs, that is,

[.4,,(.,= =o)] (44)

We can only, therefore, choose one set of equations from Eq.43, and the other six equations must

be fixed by the corresponding boundary conditions.

VERIFICATION EXAMPLES

1. EXAMPLE 1: Bending of a Cantilevered Beam.
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Lengthof theBeam
BendingStiffness
MassperLength

L=130.0 in.
EI=4xl 0_Lb.in2.
m=0.09556Lb.seJ/in.

Theoretical formula for circular natural frequency: ¢o, = , = 1.2106a,. The coefficients an,

and the theoretical natural frequencies and the corresponding results from PDEMOD are listed in

Table 1.

Table 1 Results of Example 1

Natural Frequency
No. of Modes an

5

Theoretical Value

200.0

fn, nz.

PDEMOD

fn, I"yLZ.oh

1 3.52 4.2613 0.6782 0.6775

2 22.0 26.6332 4.2388 4.246

3 61.7 74.6940 11.8879 11.890

4 121.0 146.4826 23.3134 22.570

242.1200 38.5346 38.490

2. EXAMPLE 2: Bending of a Clamped-Clamped Beam.

Length oftheBeam L=130.0in.

Bending Stiffness EI=4×107 Lb.in 2.

Mass per Length m=0.09556 Lb.secZ/in.

Theoretical formula for circular natural frequency: o). - a. - 1.2106a.. The coefficients an,

and the theoretical natural frequencies and the corresponding results from PDEMOD are listed in

Table 2.

Table 2 Results of Example 2

Natural Frequency
No. of Modes an Theoretical Value

fn, I--Iz.

PDEMOD

fn, I-Iz.oh

1 22.0 26.6332 4.2388 4.31

2 61.7 74.6940 11.8879 11.88

3 121.0 146.4826 23.3134 23.29

4 200.0 242.1200 38.5346 38.50

5 298.2 361.0009 57.4551 57.50

3. EXAMPLE 3: Bending of a Cantilevered Beam with a Tip-Mass M.

Length of the Beam L=3.077 ft.

Bending Stiffness EI=175.9644 Lb.ft 2.
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MassperLength m=0.037Lb.sec2/ff(slug).
Massat theTip M=0.1538Lb.sec2/tt(slug).
EquivalentStiffnessof theBeam k=-3EUL3=18.1202Lb/ff.

Theoreticalformulafor the first circularnaturalfrequency:ro_= M+ 0.23rn"

natural frequency and the corresponding result from PDEMOD are listed in Table 3.

No. of Modes

Table 3 Results of Example 3

Natural Frequency
Theoretical Value PDEMOD

co. f., Hz. f., Hz.
10.566 1.682 1.736

The theoretical

4. EXAMPLE 4- Torsion of a Cantilevered Beam.

Length of the Beam L=130.0 in.

Torsional Stiffness GI,---4xl07 Lb.in 2.

Polar Moment of Inertia per Length J_L=0.2907 Lb.sec 2.

Theoretical formula for the circular natural frequency: co, = nzc (.Iv / L)L2 - 283.4745n.

theoretical natural frequency and the corresponding result from PDEMOD are listed in Table 4.

Table 4 Results of Example 4

No. of Modes
Natural Frequency

Theoretical Value PDEMOD

oh f.,Hz. f.,Hz.

283.4745 45.1164 45.10

566.9490 90.2328 90.19

The

CONCLUDING REMARKS

The computer software package PDEMOD is being developed to model the structural

dynamics of general spacecraft configurations by using the distributed parameter approach. This

paper provides the detailed description of the theoretical background used in the PDEMOD

formulation. A complex large space structure is considered as an assembly of flexible beam

elements and rigid bodies. Each flexible beam element is represented by four independent partial

differential equations which exhibit lateral bending in two axes, axial deformation, and torsion. A

system of partial differential equations is then formulated and connected at the elements'

boundaries based on the compatibility conditions. The equations of motion for any number of

rigid bodies are written in the frequency domain and in terms of the mode shape parameter

coefficients. The deflections, forces and moments for both ends of a single beam element can be

described in terms of the spatial derivatives of the solutions of the corresponding PDE's, further
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expressedin terms of the same set of mode shape parameter coefficients. Distributed parameter

models can therefore be generated for any three-dimensional configurations describable by PDEs

joined at their boundaries. The verification of the code has been conducted by comparing the

results withthose examples for which the exact theoretical solutions can be obtained.

By investigating the potential of the distributed parameter modeling technique, we expect

that the PDEMOD may be further developed in the following areas: (1) structural dynamics,

modal frequencies and mode shapes; (2) parameter estimation of modal characteristics; (3)

structural damping; (4) control system dynamics; and (5) design optimization. In present stage,

however, only the first of these functions has been completed and included in the package.

Meanwhile, a massive effort is being conducted which is expected to modify the mathematical

model and global system generating procedure to develop methodology for the control analysis

purpose. Instead of using the coefficients of the solution functions, the transfer matrix may finally

be used, which provides a much more convenient way to describe the state-vector transition from

one point of the structure to the other. All these research outputs are planned to be contents of

the rnodified version of the package. It is also necessary to conduct additional testing to establish

the accuracy of modeling different types of real space structures so as to move the approach from

academic curiosity to a practical alternative for engineering design.
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_, ABSTRACT

The modeling, analysis and control of a small manipulator system are simplified by

considering the links as rigid bodies. For large flexible manipulator systems, however, the

flexibility of the links and the joint compliance must be considered. To describe the kinematics

and the dynamic behavior of a flexible manipulator system, the common approach is to use

Lagrange's equations for both the rigid-body degrees of freedom (d.o.f.'s) and the dynamic

deflection d.o.f.'s caused by the flexibility. The generalized coordinates are associated with the

rigid-body d.o.f.'s of the links, and the modal coordinates associated with the flexibility d.o.f's.

The consequence is that a set of highly-coupled and non-linear simultaneous partial differential

equations is generated.' :These .equations are so complex and lengthy that it is extremely difficult,

if not impossible, to expand _them manually even for a lower degree-of-freedom manipulator with

a lower number of modes assumed. For the flexible manipulators with greater complexity, the

dynamic analysis is literally forbidden by any practical manual symbolic derivations. The

computer symbolic derivation of flexible manipulator dynamics was then suggested by several
researchers.

For simplifying the analytical process to a realistically acceptable extent, this paper

conceives a new mathematical treatment for dynamic analysis of large flexible manipulator

systems. The essence of the idea is to separate the kinematics and flexibility analyses as two

independent but successive steps in a small time interval. Superposing the kinematic result and

the flexibility effect, the summation is viewed as the initial conditions of the next instant motion,

and the dynamic analysis succeeds to the next time interval. Repeating this process, the kinematic

analysis accompanying flexibility effect is accomplished for a required time period. As usual, the

kinematic analysis is based upon the rigid-body link assumption, and the Lagrange's equations are

set up for these less amount of rigid-body d.o.f.'s, which are manually manipulative. The

flexibility analysis for certain configuration of the manipulator system is conducted by using the

distributed parameter system approach, along with the application of the transfer matrix method.

Since an extremely complex analytical chore is resolved into two relatively simpler problems, the

complexity of the dynamic analysis of large flexible manipulator systems is mathematically

simplified. To demonstrate the applicability of the proposed methodology, an end-effector

vibration suppression problem for a large manipulator system has been investigated. The

manipulator system studied in this paper is a similitude of a NASA manipulator testbed for the

research of the berthing operation of the Space Shuttle to the Space Station. The computational
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resultsshowthattheproposedmethodisveryeffectivefor end-effectorvibrationsuppressionof a
largeflexiblemanipulatorsystem.

1. INTRODUCTION

The modeling, analysis and control of a small manipulator system are simplified by

considering the links as rigid bodiestl_41. For large flexible manipulator systems, however, the

flexibility of the links and the joint compliance must be considered. The limitations of the rigid

link assumption in the formulation and analysis of large flexible manipulator dynamics were

investigated extensively. Several formulations can be found in the robotics literature, such as,

recursive or non-recursive Lagrangian assumed modets.- n, generalized Newton-Euler methodts 1,

and Lagrangian using Raleigh-Ritz methodtgl, etc. To describe the kinematics and the dynamic

behavior of a flexible marfi.pulator system, the common approach is to use Lagrange's equations

for both the rigid-body degrees of freedom (d.o.f.'s) and the dynamic deflection d.o.f.'s caused by

the flexibility. The generalized coordinates are associated with the rigid-body d.o.f.'s of the links,

and the modal coordinates associated with the flexibility d.o.f's. The consequence is that a set of

highly-coupled and non-linear simultaneous partial differential equations is generated. These

equations are so complex and lengthy that it is extremely difficult, if not impossible, to expand

them manually even for a lower degree-of-freedom manipulator with a lower number of modes

assumed. For the flexible manipulators with greater complexity, the dynamic analysis is literally

forbidden by any. practical manual.symbolic.derivations. The computer symbolic derivation of

' _,flexible manipulator dynamics was later suggested by several researchers. Some of them wrote a

...symbolic_manipulation'.programt6,71, some of them:suggested using the MATHEMATICA

•_commercial sofi_vare packagetx01:'-.The basic functionsof the symbolic manipulation program may

. include symbolic simplification of: polynomials and rational expressions, linearization of

trigonometric functions, automated evaluation of the relative significance of terms and neglecting

the less significant terms, and even symbolic integration and differentiation. The application of

computer symbolic derivation techniques alleviates the difficulty in the dynamic analysis of large

flexible manipulator systems.

For simplifying the analytical process to a realistically acceptable extent, this paper

conceives a new mathematical treatment for dynamic analysis of large flexible manipulator

systems. The essence of the idea is to separate the kinematics and flexibility analyses as two

independent but successive steps in a small time interval. Superposing the kinematic result and

the flexibility effect, the summation is viewed as the initial conditions of the next instant motion,

and the dynamic analysis succeeds to the next time interval. Repeating this process, the kinematic

analysis accompanying flexibility effect is accomplished for a required time period. As usual, the

kinematic analysis is based upon the rigid-body link assumption, and the Lagrange's equations are

set up for these less amount of rigid-body d.o.f.'s, which are manually manipulative. The

flexibility analysis for certain configuration of the manipulator system is conducted by using the

distributed parameter system approach, along with the application of the transfer matrix

methodtn j. Since an extremely complex analytical chore is resolved into two relatively simpler

problems, the complexity of the dynamic analysis of large flexible manipulator systems is

mathematically simplified.

To demonstrate the applicability of the proposed methodology, an end-effector vibration

suppression problem for a large manipulator system has been investigated. The manipulator

_- . . o._
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systemstudiedin tbJs paper is a sirr_litude of a NASA manipulator testbed for the research of the

berthing operation of the Space Shuttle to the Space Stationt12 j. The system studied consists of

two flexible links and three revolute joints which is assumed to be constrained in the vertical

plane. There are only two rigid-body d.o.f.'s for this specific system. The two Lagrange's

equations are set up for the kinematic analysis, and the Runge-Kutta method is used to solve these

non-linear partial differential equations numerically. The flexibility of the two links includes the

lateral bending and axial elongation. The joint compliance is characterized by its torsional

stiffness coefficient. The transfer matrices for the flexible arms and revolute joints have been

constructed based on the partial differential equations. According to the compatibility conditions

at the connecting points, the global system dynamic equation can be derived. From the

corresponding boundary conditions, the characteristic equation for the global system is

determined, from which the natural frequencies and mode shape functions can be found.

Therefore, the transient response can be obtained. Joint moments are used as both displacement
and control actuators. Control law computation proceeds in the frequency domain based on the

pole-placement methodtt31. The computational results show that the proposed method is very

effective for end-effector vibration suppression of a large flexible manipulator system.

2. TWO-ARM FLEXIBLE MANIPULATOR SYSTEM

The manipulator system (Figure 1) studied in this paper is a similitude of a NASA

manipulator testbed for the research of the berthing operation of the space shuttle to the space

station (Figure 2). This research testbed is planned to be the model of the berthing process

constrained to move in the horizontal plane. Figure 2 illustrates the principal components of the

facility. The Space Station Freedom (SSF) Mobility Base is an existing Marshall Space Flight

Center (MSFC) Vehicle that has a mass of 2156.4kg. It represents a Space Station in the berthing

operation. This vehicle is suspended on the MSFC flat floor facility using low flow-rate air

bearings. The flexible appendage shown on the sketch will simulate solar panel disturbances. The

vehicle has cold gas reaction jets to allow translational maneuvering. It also has a single gimbal

for attitude control. The other vehicle, the Space Shuttle (SS) Mobility Base, is to be of similar

construction and will be attached to the SSF Mobility Base with a flexible, two-link manipulator

arm. The joints of the arms are driven by electric motors and are suspended by air bearings.

/C

/
/

#_lu 1_ B t

A

Fig. 1 The Manipulator System Studied in the Paper
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Fig.2 NASA MSFC Manipulator Testbed

The system studied consists of two flexible links and three revolute joints: shoulder joint

A, elbow joint B and wrist joint C. In the paper, it is assumed that the base frame XoYoZ0 is fixed

on the Shuttle assumed as a.rigid body, with Xo-axis along the joint A axis. The orientation of the

Yo and Zo axes about the joint axis Xo is chosen such that the resultant base frame forms a right-

hand coordinate system. The frame x_ylzt for link 1 is defined as follows: the xl-axis coincides

with the joint axis of the joint A, the zl-axis is along the axis of link 1. The frame x2y2z2 is fixed at

the joint B with x2-axis coinciding with the joint B axis, rotating with link 2, and z2-axis being

along the axis of the link 2. Since the dimension of the end-effector can not be in general

comparable with the dimensions of the two links, the end-effector will be abstracted as a rigid

body represented by a mass point as a whole at the joint C.

Each joint of the manipulator arms is driven by an individual actuator. The control

moments '_A, I:B, and Zc are also acting on the revolute joints A, B, and C, respectively. The joint

compliance is characterized by its torsional stiffness coefficient. The corresponding input joint

torques are transmitted through the arm linkage to the end-effector, where the resultant force and

moment act upon the environment. The configuration of the corresponding rigid-body system of

the one with flexibility can be specified by the two joint angles g0 and V2 as shown in Figure 1.

3. KINEMATIC ANALYSIS UNDER RIGID-BODY LINK ASSUMPTION

The common method for kinematic analysis under rigid-body link assumption in the

robotics society is based on the solution of Lagrangian equation,

(3.1)

where, Lagrangian function L is defined as L =T-U, T and U are the kinetic and potential energies

of the system, respectively. Q,. is the generalized force corresponding to the generalized

coordinate q_. For the two-arm system discussed in this paper, two rigid-body d.o.f.'s are chosen

as the two angles V, and V2 as shown in Figure 1, where points D and E are the mass centers of

the two arms. The kinetic and potential energies for both arms can be expressed as follows, for
arm 1:

T_ =lm, v_o+lloff/_ = 1 2 2 1-_m_L,_t,, U,=_mlgL 1 sinv, (3.2)
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For arm 2:

1 2 1 2 1 2 • 2 +IL_-- + :EG = + L,Ls¢,,G cos(c/,T2 - 2 ms v E "2ms [L' c/' -

1

Us= -_m2g(2L _sin C/, + L s sin _2) (3.3)

where, mr, L_ are mass and length of the ith arm (i=l or 2). The Lagrangian function is then,

L= T1 +T_-U,-U s

-I 2 lms[L:_ _ cos(c/, +ILs2-6re, L,#? + + L, Ls(°',(u's -_'2) _]

1

- _- g[(m 1 + 2m 2)L, sin _t I + m s L 2 sin W2] (3.4)

Substituting Lagrangian function L into Eq.3.1 and taking corresponding derivatives, we derive

the two Lagrangian equations:

1 1 LiLs_sc°s(¢_ C/2) I .2
(-_m_ + m2)L_ _, _ +_m 2 - +'_m2LiLs_sSin(_,-c/s)

1

+K_ _, - K e _2 + _ (ml + 2m2)gLi cos c/i = rA - re (35-D

1

lm=L, L2 _, cos(c/, - C/=)+ 1 msLS s _2 - _ msL, Ls _'_ sin(c/,- gs)

1

+GC/2 +-2m2gL2 c°sc/2 = G - rc (3.5-2)

Isolating "'7 and "'2 in each of the above two equations, Eq.3.5 can be reorganized as,

I 3 ] 2 .. 3 .2 • 2 1 2ml + m2 - g m2 cosS (_¢1 - I//2 ) Li V/1 + i m2 LI _l sin 2 (VI - ¥2 ) + _ m2 Ll L2 _2 sin(_j - _¢2)

I 3+K,4 _1 - [1 + 3LI cos(_q - _s ) ]K e _2 + (_ mr + m2 )gL1 c0s _1 - _ m2gLI co$ _2 ¢O$(_1 - I//2 )

2L 2

3L1 (re - rc) c°s(g/I - _2 )
= (r A - r e) -

2L 2
(3.6-1)

2(_m_ +m2)

_ cos(_q - _'2) - 3 cos(¢/_ - _'2)

1 I
[. 2('_ m, + m2)/-_ !.. 1 (_ rrh + rth )g/-_ cos _#2

COS(_//l -- _//2)

I

2(-_ m, + m 2 )L I (l" e - "rc )

= (r_ - r e) -
m_L s cos(_'_ - _'2 )

1 I .2
/n L_Os + (_m_ +_)/_ tan(_,_- g2)+ _r_L_L_'2 sin(_ - _'2)

(3.6-2)
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A set of two highly-coupled and non-linear simultaneous partial differential equations in Eq.3.6

must be solved numerically. The well-known Runge-Kutta method is used. To do so, we define

x, = V,(t), x2 = V,(t), x 3 = V2(t), x 4 = V2(t) (3.7)

then, a set &four first-order simultaneous equations is generated,

= Yl(-)= x2

x2 = f2 (') = AIx_ sin 2(x I - x 3) + B l x4z sin(x i - x 3) + C ix I + D ix 3 + E I cosx I

+Fl cosx 3 cos(x 1 - x3) + G 1 cos(xl - x3) + H I

e3 = L(') = x,
(3.8)

24 = f4 (') = A2 x2 tan(xl - x3 ) + B2 x4_ sin(x I - x 3) + C2x I + D 2x 3 + E 2 cos x I

cos x 3 1

+F2 cos(x, - x 3) + G_ cos(x, - x 3) + H2

where,

A_=- , /_=- ,
A1 AI Al
l 3

(ml + 2m2)gLi xm2gLl
E_ = . FI - .

AI Al
I 3

A l = [-_m I +m 2 - _-m 2 C0S 2 (x I - x3)]L _

Di =K__a.[I+3L_cos(x 1 - xa)]
AI 2L2

3L_(_'e - re)
GI=- , HI-

2L2A I

_'A- "rs

A I

and

1 2
(7 ml + m2 )LI m2LIL2

A 2 =- , B2 =-_
A 2 2A 2

I

KA _ 2(3ma +m2)Li.]c2 =- t_---_' D2 = 11+ m2L2

I I
(m_ +2n½)gL I (gin 1 +m2)gL I 2(_m I +mz)L1 (r n - r c) rA - rs

, G2 =- , H2 -
Ez = - 2A2 ' F2 - hz m2/mA2 A2

1
A 2 = [_m 2 CO$(X I - X3)-

1

2(_ma +m2)
]L1L2

3 cos(x_ - xs)

The iteration formula of the fourth-order Runge-Kutta method is as follows[14]:

h

Xt.s+, = x_.s + _ (k,., + 2k,. z + 2k,. 3 + k,.,)
i = l, 2, 3 and 4 (3.9)

where

ki,I = Z" (Xl,j ; X2,j ; X3.j ; X4,j ; t)
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h k h h h hk,.,

ki. 3 = f_ (x,.: + k,. 2; xza + k_._; x3.s + k3.2; x4.s + h k,.2; t +-_)

ki. 4 = f_ (x,a + hk,. 3; x2. s + hk2. 3; x3.s + hk3, 3; x4, s + hk,. 3; t + h)

for the jth iteration, and h is the time interval. The accuracy of the method is in the order of h 5.

The motion of the rigid-body manipulator system can now be solved by using the iteration

formula, Eq.3.9.

4. FLEXIBILITY ANALYSIS USING TRANSFER MATRIX METHOD

In this paper, the inclusion of the flexibility of the manipulator arms is treated by the

distributed parameter approach along with the transfer matrix method. The function of the

transfer matrix is to relate the linear and angular deflections, forces and moments at one point in a

structure to those at another point. The derivation of the transfer matrices for bending and

elongation of a beam element is shown in Refs. 15 and 16, but is summarized here. The two

flexible manipulator arms are represented by the Bernoulli-Euler equation and wave equation for

their bending and elongation characteristics, respectively. The Bernoulli-Euler equation is in the
form of

d4uy 1 d2uy

cgz---T-+ -, oq,2 "= 0 (4.1)

where, ay_=ky/m, and ky=EI is the bending stiffness and m is the mass per length of the beam. The

elongation vibration is described by the wave equation

_u z 1 _u_

c_ 2 a 2 c_ 2
-0 (4.2)

where, az2=kz/m, and kz=EA is the axial stiffness. After separation of variables, Eqs.4.1 and 4.2

can be expressed in the spacial domain as

=o (4.3)

o (4.4)

where, 13y4= c02/ay2, 13_= co/az, and _ is the circular natural frequency. The solutions to Eqs.4.3 and
4.4 are

and

Uy(z) = A sinflyz + B cosflj, z +Csinhflyz + Dcoshflyz

U s (z) = M sin fl_z + N cosfl, z

(4.5)

(4.6)
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where, A, B, C, D, M, N are the modal participation coefficients.

defined, then

{O}=[Uy,V,,tff,,Fy,F,,M,] r

If the state vector, {0}, is

(4.7)

where, Uy and Uz are the displacements along y- and z-axes, gx is the rotary angle of the beam

sections about x-axis, Fy and Fz are the shear and tensile forces respectively, Mx is the bending

moment about x-axis. The state vectors at the two ends of a beam element are related by a matrix

[q)], that is,

{O(L)} = [(I)]{O(O)} (4.8)

where, the transfer matrix [_] involving bending and elongation of a beam element as described in

Ref.16 is given in Eq.4.9,

[.]_-

1- 1 1 1 1 -]

2 (c°sflyL 0 2fly (sinflyL 2kyfl3 (-sinflyL 0 2ky_y (-cosflyL

+cosh_yL) +sinh_yL) + sirth_yL) +cosh_yL)
1

0 cos_zL 0 0 kzPz sinflz L 0

1 1 1 1 (sin_yL
- (co%L (-cosp L2 'fly(-sin_yL 0 0 2ky_y

+sinhflyL) +coshflyL) +coshflyL) +sinhpyL)

lkyg(sin_y L 1 2 1 10 2 kyp_v(-c°sflyL 2 (c°sflyL 0 2 fly (- sinflyL

+ sinhfly L) + coshfly L) + cosh fly L) + sinhpy L)

0 -kzfl z sinflzL 0 0 cos,BzL 0

1 kyfl2(_cOS_y L 1 1 (sin,ByL 1

l _ 2(cosflyL

2 0 2ky_y(-sinflY L 2py 0

+ coshfly L) + sinhfly L) + sinh fly L) + cosh,6'y L)

(4.9)

in which the elements at the 2nd and 4th rows and Columns reflect the elongation, the others for

the bending. Because the two arms are not in the same orientation, it is necessary to account for

the alignment of the two arms. The relationship of the two local coordinate systems can be

described by a coordinate transformation matrix [T21], that is,

where,

_ [cos(y2 ,y,)
[T='I- Lcos(z ,y,)

cos(Y2,Z,)-]

cos(z=,z,)J

(4.10)
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The transfer matrix of a revolute joint R has been derived in Ref. 11. A revolute joint R is

abstracted as a massless torsional spring with spring constant kvR through which two elements 'h"

and 'b" are connected. The actuator fixed at the joint R will produce a control moment zR. The

state vector {0}a at the end &element '_."is related to the state vector {0}b at the end &element

"b" through the transfer matrix [(I:,] of the joint R by

(el.--[..l/el,+{B.}_. (4.11)

where, the transfer matrix [(PR] of the joint R is given by

1

[Tab] [ (4.12)

lJ

and the control-influence vector,

_-[o
T1

0 iRs2 +kv, _ 0 0 -lJ (4.13)

Applying the general expression, Eq.4.11, to the joints A and B, we find out that,

and

{o(.,--o)}°=[®_1{o(.,=o)},+{B.}_. (4.14)

{0(z 2 = L2)}2 = [A]{8(z, = 0)} ° +[5']{r} (5.1)

where, the system matrix [A]=[CP2][OB]'I[(I)I][OA]'I; the control-influence matrix

[B]=[-[O2][O_]'I[CI)I][(:I)A]'I{BA},-[O2][OB]'I{BB}, -{Bc}]; the control vector {z}=[ xA, zs, Zc] r.

The element transfer matrices [_.]'s and control influence vectors {B.}'s are associated with the

two links and the three joints, respectively, recognized by the corresponding subscripts.

The dynamic properties at a certain configuration without control actions are the inherent

properties of the system, which are varied with the change in configuration when the manipulator

{o(z,--L,)},=[¢.]{o(_:-o)}+{B.}_-. (4_s)

where, the subscripts 0, 1 and 2 stand for the Shuttle Base, arm 1 and arm 2, respectively.

5. SYSTEM DYNAMIC EQUATIONS FOR A SPECIFIC CONFIGURATION

For a specific configuration at an arbitrary time instant, the system dynamic equation was
derived in detail in Ref. 11, that is



systemis in motion. The methodto derivetheseinherentdynamicpropertiesis straightforward.
Considertheboundaryconditions(B.C.'s) of the systeminFigure 1,at the fixedend(attachment
pointto theShuttleBase),

u,o(2,= o)= u,. (2,= o)=%0(z, = o)= 0 (5.2)

at the free end (end-effector),

F,,(z2=&)= F,,(z2= &)= M,,(h =&)=0 (5.3)

Applying the B.C.'s, Eqs.5.2

derived,

and

[A],12

and 5.3, to Eq.5.1 without control action, two equations can be

o
(5.4)

:0)1
[AAi :o)

:o)J°
=o (5.5)

where, [AI2] and [Az2] are the block matrices of the matrix [A]. The condition for Eq.5.5 having

non-trivial solution is that

DET[A eJ=O (5.6)

Eq.5.6 is the characteristic equation of the system from which the natural frequencies m's can be

derived. After obtaining the natural frequencies from Eq.5.6, we can derive the mode shape

functions from the equation below,

[G]{_}=O (5.7)

The detailed derivation of Eq.5.7 can be found in Ref. 16. The vector {_} consists of the modal

participation coefficients for the beams 1 and 2 appearing in Eqs.4.5 and 4.6, that is,{_}=[A1, B1,

C1, D1, MI, NI, A2, B2, C2, D2, M2, N2] T. Normalizing Eq.5.7 with N2=l, Eq.5.7 can be solved to

obtain the modal participation coefficients for the two beams, thereby the mode shape functions

can be obtained based on the solution equations, that is, Eqs.4.5 and 4.6, for the ith beam,

and

Ue,(Z_)= A, sin,Sy, z, +Bicosl3yz, +Cisinh,Srz, +D_coshByz , (5.8)

U,, (z,)= M, sin,8,,z, + N, cos,8,,z, (5.9)

It is assumed that the control actions are related to the feedbacks of the nodal displacements and

velocities, that is,

10



rn=[kn]{6(z,=0)},=[k.,+k.S,k.,+k.S,kB+ks.S,O,O,O]{6(z`=0)}= (5.11)

Inserting the control actions into Eq. 5.1 and combining the similar terms, the closed-loop system

dynamic equation follows,

{O(z,- L,)}=[_{_z,=O)}o (5.13)

where.[A-]=[O_][_B]-'[O,][OA1-',and
[_.1=[®_1+{_.}[k.],[_.l=[*.1+{B.)[k.].[_,l=(t_l+{_}[k_])-'[®,1.

By applying the B.C.'s, Eqs.5.2 and 5.3, the closed-loop characteristic equation, DEI[-A_ ] = O,

can be derived, where, [7/22] is a block matrix of the matrix [A--I, from which the closed-loop poles

can be found.

6. SUPERPOSING RIGID-BODY KINEMATICS AND FLEXIBILITY EFFECT

This.paper conceives a new.mathematical treatment for dynamic analysis of large flexible

manipulator systems. The.essence of the idea is to separate the kinematics and flexibility analyses

as two independent but successive steps in a small time interval. Section 3 of this paper gave the

kinematic analysis assuming a rigid-body link based on the Lagrangian equation method, using the

Runge-Kutta numerical approach. Sections 4 and 5 provided a method for system dynamic

analysis due to flexibility at a specific configuration of the manipulator system. Compared with

the macroscopic motion of the manipulator system, the motion resulted from flexibility is only a

"microcosmic" motion. Only after a long-term effect is accumulated will the flexibility effect be

significant. It allows us, therefore, to make the assumptions: at a certain configuration of the

manipulator system, the deflections and the rates of deflection of the arms due to flexibility are

small, and the elongation deformations are high-order infinitesimal so that they are neglected.

Superposing the rigid-body motion and the motion due to flexibility, we have

_l(zl,t) = _,(t)+d_l(zl,t ) and _2(z2,t) = _2(t)+d_t2(z2,t) (6.1)

where, the small perturbation can be assumed as (cf. Fig.3),

1 1

d_,(z_,t)=-_y,(z,,t) and d_2(z2,t)=-_y:(z2,t) (6.2)

Therefore, the two generalized coordinates defining the instantaneous motions of the two arms in

the Lagrangian equation, Eq.3.5, would be

11



y2

d_2 / /_-:' _

.,2

,2
%.L/X

A •

Fig.3 Small Perturbation of the Angles

1
7t,(t)=-#,(z,,t)-ly,(zt,t) and _¢2(t)=-#2(z2,t)---y2(z:,t) (6.3)

Z, Z 2

Substituting Eq.6.3 into Eq.3.6 and neglecting high-order infinitesimals, we can express the

Lagrangian equations in terms of--, and --2 as follows,

_, = A,g,--2 sin2(F ' _ F2) + B,_22 sin(F, - F2) + C,F, + D,F= + E, cosF,

1

+F 1cosF= cos(F, - Fz) + G, cos(#, - '#z)+ H, + z--SjJ,

_2 = A2) _ tan('#,-'#2) + B2_2--2sin('#,-'#2) + C2F, + D2-#= + E2 cos-#,

cos-#_ 1 1
+F 2

cos(-#,-'#_) +Gz cos('#,-'#z) +H_ +by_-

(6.4-1)

(6.4-2)

Defining w, = _, w 2 = _/,, w 3 = N2, and w 4 = I[J2,

equations is obtained which is similar to Eq.3.8,

a set of four first-order simultaneous

#'Im W2

_i,z = A_w_ sin 2(w, - w 3) + B, w4_ sin(w 1 - w 3) + C,w, + D,w 3 + E, cosw,
1

+F I cos% cos(w, - %) + G, cos(w, - %) + H, + z-[ fi'

w3 = w4

w4 = A2w_ tan(w, - %) + B_w_ sin(w, - w 3) + C_w 1 + D2w 3 + E 2 cosw,

cos w 3 1 +//2 1
+Fz cos(w,-%) +G, cos(w,-%) +z--_"fi'

(6.5)

The only difference between Eq.6.5 and Eq.3.8 is the inclusion ofji, and Y2, which represents the

effect of flexibility, and can be solved based on the formulation described in Sections 4 and 5 as

long as the instantaneous configuration is specified and the motion at the end of previous time

12



interval is known. By using the Runge-Kuttaprocedurein Section3, Eq.6.5 can be solved
numerically. A solution is thus obtainedwhich representsthe superpositionof rigid-body
kinematicsandflexibility effect.

7. SIMULATION EXAMPLES

As mentioned earlier, the manipulator system studied here is a similitude of a NASA

MSFC manipulator testbed for the research of the berthing operation of the Space Shuttle to the

Space Station. The mechanical properties of the system are listed in Table 1.

Table 1 Mechanical Properties of the Two-arm Manipulator System

. Beam i Beam 2

120.0Beam Length, L, (in.)

Sectional Area, A, (in. 2)

Second Moment of the Cross Section, I, (in:)

Modulus of Elasticity, E, (psi)

Mass per length, (slug/in.)

60.0

50.27 12.57

107.0 107.0

201.06 12.57

0.1526 0.0382

The initial conditions of the system are assumedat g_ = 90 °, V/_ = 0 °, _/2 = 0, and _2 = 0.

First, the difference between the results of under rigid-body link assumption and with flexibility

effects are noted by three examples as shown in Fig.4. These 'examples exhibit the motions of the

manipulator system from the specified initial conditions under the actions of gravity force, inertia

force, and the constant joint control moments %, "_B,and Xc as shown in each figure. The solid

lines represent the motions under rigid-body link assumption, while the dashed lines represent the

motions with flexibility effects. For clarity, the vibratory wave shapes for flexible beams were

neglected in the figures.

Next, several examples demonstrate the effectiveness for end-effector vibration

suppression. The motion of the manipulator system is a continuous process, which stimulates

vibration of the system at every time instant. The vibration suppression action continues

throughout the whole process without interruption. The joint control moments will always

change themselves based upon the control law given in Eqs.5.10 to 5.12. They play the roles of

both actuating the manipulator system to fulfill a certain task and alleviating vibratory fluctuation

while the system is operating.

-- VIIH FL[XIBILIIY
-- _ VlII,I]UTrL[XIBILITY

11_ INIERVAL_1 SEC

JDINI A B C

O'_N!
TI_KI.BS) I ? 3
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w_iM_7 rLcxxmlLI1V
_:_ INTCRVAL$, I _C¢

. \

-- _TT_ rLE_IIIL_V

TIMe INTC'_'_LS, I scc

i,_:ll_l i • i • i c i

.... I'l

•Fig.4 The Difference Between the Results Of Under Rigid-Body Link Assumption

And With Flexibility Effects

Figs.5 to 7 demonstrate the effectiveness for the end-effector vibration suppression at

instantaneous positions 1, 2, 3 as shown in Fig.4, with the initial joint control moments XA=I 1%-

klb, "cB=2 ft-klb, and Xc=4 ft-klb. Both time histories without control (left) and with control

(right) are Shown in the figures for comparison. The vibratory motion of the end-effector is

described in the second link's coordinate system, x2y2z2, as defined in Section 2. The upper two

figures in Figs.5 to 7 represent the results in y2-direction, the lower two in z2-direction. The

instantaneous vibration can be suppressed in about 0.3 second for all positions studied.

8. CONCLUDING REMARKS

A new mathematical treatment for dynamic analysis of large flexible manipulator systems

is derived. An extremely complex analytical chore is resolved into two relatively simpler

problems, the complexity of the dynamic analysis of large flexible manipulator systems is,

therefore, mathematically simplified to a realistically acceptable extent for practical manual

symbolic derivation of the equations of motion. Since the equation of motion is a set of highly-

coupled and non-linear simultaneous partial differential equations, the Runge-Kutta numerical

procedure has been used to solve the equations. As an example, the vibration suppression

problem of a similitude of a NASA MSFC manipulator testbed has been investigated in the paper.
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The computationalresults show that the proposedmethodis very effective for end-effector
vibrationsuppressionfor a largeflexiblemanipulatorsystem.
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